This source file includes following definitions.
- zyd_match
- zyd_attachhook
- zyd_attach
- zyd_complete_attach
- zyd_detach
- zyd_open_pipes
- zyd_close_pipes
- zyd_alloc_tx_list
- zyd_free_tx_list
- zyd_alloc_rx_list
- zyd_free_rx_list
- zyd_node_alloc
- zyd_media_change
- zyd_next_scan
- zyd_task
- zyd_newstate
- zyd_cmd
- zyd_read16
- zyd_read32
- zyd_write16
- zyd_write32
- zyd_rfwrite
- zyd_lock_phy
- zyd_unlock_phy
- zyd_rfmd_init
- zyd_rfmd_switch_radio
- zyd_rfmd_set_channel
- zyd_al2230_init
- zyd_al2230_init_b
- zyd_al2230_switch_radio
- zyd_al2230_set_channel
- zyd_al7230B_init
- zyd_al7230B_switch_radio
- zyd_al7230B_set_channel
- zyd_al2210_init
- zyd_al2210_switch_radio
- zyd_al2210_set_channel
- zyd_gct_init
- zyd_gct_switch_radio
- zyd_gct_set_channel
- zyd_maxim_init
- zyd_maxim_switch_radio
- zyd_maxim_set_channel
- zyd_maxim2_init
- zyd_maxim2_switch_radio
- zyd_maxim2_set_channel
- zyd_rf_attach
- zyd_rf_name
- zyd_hw_init
- zyd_read_eeprom
- zyd_set_macaddr
- zyd_set_bssid
- zyd_switch_radio
- zyd_set_led
- zyd_set_rxfilter
- zyd_set_chan
- zyd_set_beacon_interval
- zyd_plcp_signal
- zyd_intr
- zyd_rx_data
- zyd_rxeof
- zyd_txeof
- zyd_tx_data
- zyd_start
- zyd_watchdog
- zyd_ioctl
- zyd_init
- zyd_stop
- zyd_loadfirmware
- zyd_iter_func
- zyd_amrr_timeout
- zyd_newassoc
- zyd_activate
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 #include "bpfilter.h"
25
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/proc.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37
38 #include <machine/bus.h>
39 #include <machine/endian.h>
40
41 #if NBPFILTER > 0
42 #include <net/bpf.h>
43 #endif
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/if_ether.h>
55 #include <netinet/ip.h>
56 #endif
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66
67 #include <dev/usb/if_zydreg.h>
68
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84
85
86 #define ZYD_ZD1211_DEV(v, p) \
87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p) \
89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 struct usb_devno dev;
92 uint8_t rev;
93 #define ZYD_ZD1211 0
94 #define ZYD_ZD1211B 1
95 } zyd_devs[] = {
96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
97 ZYD_ZD1211_DEV(ABOCOM, WL54),
98 ZYD_ZD1211_DEV(ASUS, WL159G),
99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
102 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
103 ZYD_ZD1211_DEV(SAGEM, XG760A),
104 ZYD_ZD1211_DEV(SENAO, NUB8301),
105 ZYD_ZD1211_DEV(SITECOMEU, WL113),
106 ZYD_ZD1211_DEV(SWEEX, ZD1211),
107 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
108 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
109 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
110 ZYD_ZD1211_DEV(TWINMOS, G240),
111 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
112 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
113 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
114 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
115 ZYD_ZD1211_DEV(ZCOM, ZD1211),
116 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
117 ZYD_ZD1211_DEV(ZYXEL, AG225H),
118 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
119
120 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
121 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
122 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
123 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
124 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
125 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
126 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
127 ZYD_ZD1211B_DEV(MELCO, KG54L),
128 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
129 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
130 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
131 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
132 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
133 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
134 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
135 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
136 ZYD_ZD1211B_DEV(USR, USR5423),
137 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
138 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
139 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
140 ZYD_ZD1211B_DEV(ZYXEL, M202),
141 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
142 };
143 #define zyd_lookup(v, p) \
144 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
145
146 int zyd_match(struct device *, void *, void *);
147 void zyd_attach(struct device *, struct device *, void *);
148 int zyd_detach(struct device *, int);
149 int zyd_activate(struct device *, enum devact);
150
151 struct cfdriver zyd_cd = {
152 NULL, "zyd", DV_IFNET
153 };
154
155 const struct cfattach zyd_ca = {
156 sizeof(struct zyd_softc),
157 zyd_match,
158 zyd_attach,
159 zyd_detach,
160 zyd_activate,
161 };
162
163 void zyd_attachhook(void *);
164 int zyd_complete_attach(struct zyd_softc *);
165 int zyd_open_pipes(struct zyd_softc *);
166 void zyd_close_pipes(struct zyd_softc *);
167 int zyd_alloc_tx_list(struct zyd_softc *);
168 void zyd_free_tx_list(struct zyd_softc *);
169 int zyd_alloc_rx_list(struct zyd_softc *);
170 void zyd_free_rx_list(struct zyd_softc *);
171 struct ieee80211_node *zyd_node_alloc(struct ieee80211com *);
172 int zyd_media_change(struct ifnet *);
173 void zyd_next_scan(void *);
174 void zyd_task(void *);
175 int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
176 int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
177 void *, int, u_int);
178 int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
179 int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
180 int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
181 int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
182 int zyd_rfwrite(struct zyd_softc *, uint32_t);
183 void zyd_lock_phy(struct zyd_softc *);
184 void zyd_unlock_phy(struct zyd_softc *);
185 int zyd_rfmd_init(struct zyd_rf *);
186 int zyd_rfmd_switch_radio(struct zyd_rf *, int);
187 int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
188 int zyd_al2230_init(struct zyd_rf *);
189 int zyd_al2230_switch_radio(struct zyd_rf *, int);
190 int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
191 int zyd_al2230_init_b(struct zyd_rf *);
192 int zyd_al7230B_init(struct zyd_rf *);
193 int zyd_al7230B_switch_radio(struct zyd_rf *, int);
194 int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
195 int zyd_al2210_init(struct zyd_rf *);
196 int zyd_al2210_switch_radio(struct zyd_rf *, int);
197 int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
198 int zyd_gct_init(struct zyd_rf *);
199 int zyd_gct_switch_radio(struct zyd_rf *, int);
200 int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
201 int zyd_maxim_init(struct zyd_rf *);
202 int zyd_maxim_switch_radio(struct zyd_rf *, int);
203 int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
204 int zyd_maxim2_init(struct zyd_rf *);
205 int zyd_maxim2_switch_radio(struct zyd_rf *, int);
206 int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
207 int zyd_rf_attach(struct zyd_softc *, uint8_t);
208 const char *zyd_rf_name(uint8_t);
209 int zyd_hw_init(struct zyd_softc *);
210 int zyd_read_eeprom(struct zyd_softc *);
211 int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
212 int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
213 int zyd_switch_radio(struct zyd_softc *, int);
214 void zyd_set_led(struct zyd_softc *, int, int);
215 int zyd_set_rxfilter(struct zyd_softc *);
216 void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
217 int zyd_set_beacon_interval(struct zyd_softc *, int);
218 uint8_t zyd_plcp_signal(int);
219 void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
220 void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
221 void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
222 void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
223 int zyd_tx_data(struct zyd_softc *, struct mbuf *,
224 struct ieee80211_node *);
225 void zyd_start(struct ifnet *);
226 void zyd_watchdog(struct ifnet *);
227 int zyd_ioctl(struct ifnet *, u_long, caddr_t);
228 int zyd_init(struct ifnet *);
229 void zyd_stop(struct ifnet *, int);
230 int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
231 void zyd_iter_func(void *, struct ieee80211_node *);
232 void zyd_amrr_timeout(void *);
233 void zyd_newassoc(struct ieee80211com *, struct ieee80211_node *,
234 int);
235
236 int
237 zyd_match(struct device *parent, void *match, void *aux)
238 {
239 struct usb_attach_arg *uaa = aux;
240
241 if (!uaa->iface)
242 return UMATCH_NONE;
243
244 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
245 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
246 }
247
248 void
249 zyd_attachhook(void *xsc)
250 {
251 struct zyd_softc *sc = xsc;
252 const char *fwname;
253 u_char *fw;
254 size_t size;
255 int error;
256
257 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zd1211" : "zd1211b";
258 if ((error = loadfirmware(fwname, &fw, &size)) != 0) {
259 printf("%s: could not read firmware file %s (error=%d)\n",
260 sc->sc_dev.dv_xname, fwname, error);
261 return;
262 }
263
264 error = zyd_loadfirmware(sc, fw, size);
265 free(fw, M_DEVBUF);
266 if (error != 0) {
267 printf("%s: could not load firmware (error=%d)\n",
268 sc->sc_dev.dv_xname, error);
269 return;
270 }
271
272
273 if (zyd_complete_attach(sc) == 0)
274 sc->attached = 1;
275 }
276
277 void
278 zyd_attach(struct device *parent, struct device *self, void *aux)
279 {
280 struct zyd_softc *sc = (struct zyd_softc *)self;
281 struct usb_attach_arg *uaa = aux;
282 char *devinfop;
283 usb_device_descriptor_t* ddesc;
284
285 sc->sc_udev = uaa->device;
286
287 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
288 printf("\n%s: %s\n", sc->sc_dev.dv_xname, devinfop);
289 usbd_devinfo_free(devinfop);
290
291 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
292
293 ddesc = usbd_get_device_descriptor(sc->sc_udev);
294 if (UGETW(ddesc->bcdDevice) < 0x4330) {
295 printf("%s: device version mismatch: 0x%x "
296 "(only >= 43.30 supported)\n", sc->sc_dev.dv_xname,
297 UGETW(ddesc->bcdDevice));
298 return;
299 }
300
301 if (rootvp == NULL)
302 mountroothook_establish(zyd_attachhook, sc);
303 else
304 zyd_attachhook(sc);
305 }
306
307 int
308 zyd_complete_attach(struct zyd_softc *sc)
309 {
310 struct ieee80211com *ic = &sc->sc_ic;
311 struct ifnet *ifp = &ic->ic_if;
312 usbd_status error;
313 int i;
314
315 usb_init_task(&sc->sc_task, zyd_task, sc);
316 timeout_set(&sc->scan_to, zyd_next_scan, sc);
317
318 sc->amrr.amrr_min_success_threshold = 1;
319 sc->amrr.amrr_max_success_threshold = 10;
320 timeout_set(&sc->amrr_to, zyd_amrr_timeout, sc);
321
322 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
323 if (error != 0) {
324 printf("%s: setting config no failed\n",
325 sc->sc_dev.dv_xname);
326 goto fail;
327 }
328
329 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
330 &sc->sc_iface);
331 if (error != 0) {
332 printf("%s: getting interface handle failed\n",
333 sc->sc_dev.dv_xname);
334 goto fail;
335 }
336
337 if ((error = zyd_open_pipes(sc)) != 0) {
338 printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
339 goto fail;
340 }
341
342 if ((error = zyd_read_eeprom(sc)) != 0) {
343 printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
344 goto fail;
345 }
346
347 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
348 printf("%s: could not attach RF\n", sc->sc_dev.dv_xname);
349 goto fail;
350 }
351
352 if ((error = zyd_hw_init(sc)) != 0) {
353 printf("%s: hardware initialization failed\n",
354 sc->sc_dev.dv_xname);
355 goto fail;
356 }
357
358 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
359 sc->sc_dev.dv_xname, (sc->mac_rev == ZYD_ZD1211) ? "": "B",
360 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
361 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
362
363 ic->ic_phytype = IEEE80211_T_OFDM;
364 ic->ic_opmode = IEEE80211_M_STA;
365 ic->ic_state = IEEE80211_S_INIT;
366
367
368 ic->ic_caps =
369 IEEE80211_C_MONITOR |
370 IEEE80211_C_TXPMGT |
371 IEEE80211_C_SHPREAMBLE |
372 IEEE80211_C_WEP;
373
374
375 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
376 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
377
378
379 for (i = 1; i <= 14; i++) {
380 ic->ic_channels[i].ic_freq =
381 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
382 ic->ic_channels[i].ic_flags =
383 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
384 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
385 }
386
387 ifp->if_softc = sc;
388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
389 ifp->if_init = zyd_init;
390 ifp->if_ioctl = zyd_ioctl;
391 ifp->if_start = zyd_start;
392 ifp->if_watchdog = zyd_watchdog;
393 IFQ_SET_READY(&ifp->if_snd);
394 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
395
396 if_attach(ifp);
397 ieee80211_ifattach(ifp);
398 ic->ic_node_alloc = zyd_node_alloc;
399 ic->ic_newassoc = zyd_newassoc;
400
401
402 sc->sc_newstate = ic->ic_newstate;
403 ic->ic_newstate = zyd_newstate;
404 ieee80211_media_init(ifp, zyd_media_change, ieee80211_media_status);
405
406 #if NBPFILTER > 0
407 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
408 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
409
410 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
411 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
412 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
413
414 sc->sc_txtap_len = sizeof sc->sc_txtapu;
415 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
416 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
417 #endif
418
419 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
420 &sc->sc_dev);
421
422 fail: return error;
423 }
424
425 int
426 zyd_detach(struct device *self, int flags)
427 {
428 struct zyd_softc *sc = (struct zyd_softc *)self;
429 struct ifnet *ifp = &sc->sc_ic.ic_if;
430 int s;
431
432 s = splusb();
433
434 usb_rem_task(sc->sc_udev, &sc->sc_task);
435 timeout_del(&sc->scan_to);
436 timeout_del(&sc->amrr_to);
437
438 zyd_close_pipes(sc);
439
440 if (!sc->attached) {
441 splx(s);
442 return 0;
443 }
444
445 ieee80211_ifdetach(ifp);
446 if_detach(ifp);
447
448 zyd_free_rx_list(sc);
449 zyd_free_tx_list(sc);
450
451 sc->attached = 0;
452
453 splx(s);
454
455 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
456 &sc->sc_dev);
457
458 return 0;
459 }
460
461 int
462 zyd_open_pipes(struct zyd_softc *sc)
463 {
464 usb_endpoint_descriptor_t *edesc;
465 int isize;
466 usbd_status error;
467
468
469 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
470 if (edesc == NULL)
471 return EINVAL;
472
473 isize = UGETW(edesc->wMaxPacketSize);
474 if (isize == 0)
475 return EINVAL;
476
477 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
478 if (sc->ibuf == NULL)
479 return ENOMEM;
480
481 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
482 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
483 USBD_DEFAULT_INTERVAL);
484 if (error != 0) {
485 printf("%s: open rx intr pipe failed: %s\n",
486 sc->sc_dev.dv_xname, usbd_errstr(error));
487 goto fail;
488 }
489
490
491 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
492 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
493 if (error != 0) {
494 printf("%s: open tx intr pipe failed: %s\n",
495 sc->sc_dev.dv_xname, usbd_errstr(error));
496 goto fail;
497 }
498
499
500 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
501 &sc->zyd_ep[ZYD_ENDPT_BIN]);
502 if (error != 0) {
503 printf("%s: open rx pipe failed: %s\n",
504 sc->sc_dev.dv_xname, usbd_errstr(error));
505 goto fail;
506 }
507
508
509 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
510 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
511 if (error != 0) {
512 printf("%s: open tx pipe failed: %s\n",
513 sc->sc_dev.dv_xname, usbd_errstr(error));
514 goto fail;
515 }
516
517 return 0;
518
519 fail: zyd_close_pipes(sc);
520 return error;
521 }
522
523 void
524 zyd_close_pipes(struct zyd_softc *sc)
525 {
526 int i;
527
528 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
529 if (sc->zyd_ep[i] != NULL) {
530 usbd_abort_pipe(sc->zyd_ep[i]);
531 usbd_close_pipe(sc->zyd_ep[i]);
532 sc->zyd_ep[i] = NULL;
533 }
534 }
535 if (sc->ibuf != NULL) {
536 free(sc->ibuf, M_USBDEV);
537 sc->ibuf = NULL;
538 }
539 }
540
541 int
542 zyd_alloc_tx_list(struct zyd_softc *sc)
543 {
544 int i, error;
545
546 sc->tx_queued = 0;
547
548 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
549 struct zyd_tx_data *data = &sc->tx_data[i];
550
551 data->sc = sc;
552
553 data->xfer = usbd_alloc_xfer(sc->sc_udev);
554 if (data->xfer == NULL) {
555 printf("%s: could not allocate tx xfer\n",
556 sc->sc_dev.dv_xname);
557 error = ENOMEM;
558 goto fail;
559 }
560 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
561 if (data->buf == NULL) {
562 printf("%s: could not allocate tx buffer\n",
563 sc->sc_dev.dv_xname);
564 error = ENOMEM;
565 goto fail;
566 }
567
568
569 bzero(data->buf, sizeof (struct zyd_tx_desc));
570 }
571 return 0;
572
573 fail: zyd_free_tx_list(sc);
574 return error;
575 }
576
577 void
578 zyd_free_tx_list(struct zyd_softc *sc)
579 {
580 struct ieee80211com *ic = &sc->sc_ic;
581 int i;
582
583 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
584 struct zyd_tx_data *data = &sc->tx_data[i];
585
586 if (data->xfer != NULL) {
587 usbd_free_xfer(data->xfer);
588 data->xfer = NULL;
589 }
590 if (data->ni != NULL) {
591 ieee80211_release_node(ic, data->ni);
592 data->ni = NULL;
593 }
594 }
595 }
596
597 int
598 zyd_alloc_rx_list(struct zyd_softc *sc)
599 {
600 int i, error;
601
602 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
603 struct zyd_rx_data *data = &sc->rx_data[i];
604
605 data->sc = sc;
606
607 data->xfer = usbd_alloc_xfer(sc->sc_udev);
608 if (data->xfer == NULL) {
609 printf("%s: could not allocate rx xfer\n",
610 sc->sc_dev.dv_xname);
611 error = ENOMEM;
612 goto fail;
613 }
614 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
615 if (data->buf == NULL) {
616 printf("%s: could not allocate rx buffer\n",
617 sc->sc_dev.dv_xname);
618 error = ENOMEM;
619 goto fail;
620 }
621 }
622 return 0;
623
624 fail: zyd_free_rx_list(sc);
625 return error;
626 }
627
628 void
629 zyd_free_rx_list(struct zyd_softc *sc)
630 {
631 int i;
632
633 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
634 struct zyd_rx_data *data = &sc->rx_data[i];
635
636 if (data->xfer != NULL) {
637 usbd_free_xfer(data->xfer);
638 data->xfer = NULL;
639 }
640 }
641 }
642
643 struct ieee80211_node *
644 zyd_node_alloc(struct ieee80211com *ic)
645 {
646 struct zyd_node *zn;
647
648 zn = malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT);
649 if (zn != NULL)
650 bzero(zn, sizeof (struct zyd_node));
651 return (struct ieee80211_node *)zn;
652 }
653
654 int
655 zyd_media_change(struct ifnet *ifp)
656 {
657 int error;
658
659 error = ieee80211_media_change(ifp);
660 if (error != ENETRESET)
661 return error;
662
663 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
664 zyd_init(ifp);
665
666 return 0;
667 }
668
669
670
671
672
673 void
674 zyd_next_scan(void *arg)
675 {
676 struct zyd_softc *sc = arg;
677 struct ieee80211com *ic = &sc->sc_ic;
678 struct ifnet *ifp = &ic->ic_if;
679
680 if (ic->ic_state == IEEE80211_S_SCAN)
681 ieee80211_next_scan(ifp);
682 }
683
684 void
685 zyd_task(void *arg)
686 {
687 struct zyd_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689 enum ieee80211_state ostate;
690
691 ostate = ic->ic_state;
692
693 switch (sc->sc_state) {
694 case IEEE80211_S_INIT:
695 if (ostate == IEEE80211_S_RUN) {
696
697 zyd_set_led(sc, ZYD_LED1, 0);
698
699
700 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
701 }
702 break;
703
704 case IEEE80211_S_SCAN:
705 zyd_set_chan(sc, ic->ic_bss->ni_chan);
706 timeout_add(&sc->scan_to, hz / 5);
707 break;
708
709 case IEEE80211_S_AUTH:
710 case IEEE80211_S_ASSOC:
711 zyd_set_chan(sc, ic->ic_bss->ni_chan);
712 break;
713
714 case IEEE80211_S_RUN:
715 {
716 struct ieee80211_node *ni = ic->ic_bss;
717
718 zyd_set_chan(sc, ni->ni_chan);
719
720 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
721
722 zyd_set_led(sc, ZYD_LED1, 1);
723
724
725 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
726
727 zyd_set_bssid(sc, ni->ni_bssid);
728 }
729
730 if (ic->ic_opmode == IEEE80211_M_STA) {
731
732 zyd_newassoc(ic, ni, 1);
733 }
734
735
736 if (ic->ic_fixed_rate == -1)
737 timeout_add(&sc->amrr_to, hz);
738
739 break;
740 }
741 }
742
743 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
744 }
745
746 int
747 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
748 {
749 struct zyd_softc *sc = ic->ic_softc;
750
751 usb_rem_task(sc->sc_udev, &sc->sc_task);
752 timeout_del(&sc->scan_to);
753 timeout_del(&sc->amrr_to);
754
755
756 sc->sc_state = nstate;
757 sc->sc_arg = arg;
758 usb_add_task(sc->sc_udev, &sc->sc_task);
759
760 return 0;
761 }
762
763 int
764 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
765 void *odata, int olen, u_int flags)
766 {
767 usbd_xfer_handle xfer;
768 struct zyd_cmd cmd;
769 uint16_t xferflags;
770 usbd_status error;
771 int s;
772
773 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
774 return ENOMEM;
775
776 cmd.code = htole16(code);
777 bcopy(idata, cmd.data, ilen);
778
779 xferflags = USBD_FORCE_SHORT_XFER;
780 if (!(flags & ZYD_CMD_FLAG_READ))
781 xferflags |= USBD_SYNCHRONOUS;
782 else
783 s = splusb();
784
785 sc->odata = odata;
786 sc->olen = olen;
787
788 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
789 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
790 error = usbd_transfer(xfer);
791 if (error != USBD_IN_PROGRESS && error != 0) {
792 if (flags & ZYD_CMD_FLAG_READ)
793 splx(s);
794 printf("%s: could not send command (error=%s)\n",
795 sc->sc_dev.dv_xname, usbd_errstr(error));
796 (void)usbd_free_xfer(xfer);
797 return EIO;
798 }
799 if (!(flags & ZYD_CMD_FLAG_READ)) {
800 (void)usbd_free_xfer(xfer);
801 return 0;
802 }
803
804 error = tsleep(sc, PCATCH, "zydcmd", hz);
805 sc->odata = NULL;
806 splx(s);
807
808 (void)usbd_free_xfer(xfer);
809 return error;
810 }
811
812 int
813 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
814 {
815 struct zyd_pair tmp;
816 int error;
817
818 reg = htole16(reg);
819 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
820 ZYD_CMD_FLAG_READ);
821 if (error == 0)
822 *val = letoh16(tmp.val);
823 return error;
824 }
825
826 int
827 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
828 {
829 struct zyd_pair tmp[2];
830 uint16_t regs[2];
831 int error;
832
833 regs[0] = htole16(ZYD_REG32_HI(reg));
834 regs[1] = htole16(ZYD_REG32_LO(reg));
835 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
836 ZYD_CMD_FLAG_READ);
837 if (error == 0)
838 *val = letoh16(tmp[0].val) << 16 | letoh16(tmp[1].val);
839 return error;
840 }
841
842 int
843 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
844 {
845 struct zyd_pair pair;
846
847 pair.reg = htole16(reg);
848 pair.val = htole16(val);
849
850 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
851 }
852
853 int
854 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
855 {
856 struct zyd_pair pair[2];
857
858 pair[0].reg = htole16(ZYD_REG32_HI(reg));
859 pair[0].val = htole16(val >> 16);
860 pair[1].reg = htole16(ZYD_REG32_LO(reg));
861 pair[1].val = htole16(val & 0xffff);
862
863 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
864 }
865
866 int
867 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
868 {
869 struct zyd_rf *rf = &sc->sc_rf;
870 struct zyd_rfwrite req;
871 uint16_t cr203;
872 int i;
873
874 (void)zyd_read16(sc, ZYD_CR203, &cr203);
875 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
876
877 req.code = htole16(2);
878 req.width = htole16(rf->width);
879 for (i = 0; i < rf->width; i++) {
880 req.bit[i] = htole16(cr203);
881 if (val & (1 << (rf->width - 1 - i)))
882 req.bit[i] |= htole16(ZYD_RF_DATA);
883 }
884 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
885 }
886
887 void
888 zyd_lock_phy(struct zyd_softc *sc)
889 {
890 uint32_t tmp;
891
892 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
893 tmp &= ~ZYD_UNLOCK_PHY_REGS;
894 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
895 }
896
897 void
898 zyd_unlock_phy(struct zyd_softc *sc)
899 {
900 uint32_t tmp;
901
902 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
903 tmp |= ZYD_UNLOCK_PHY_REGS;
904 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
905 }
906
907
908
909
910 int
911 zyd_rfmd_init(struct zyd_rf *rf)
912 {
913 #define N(a) (sizeof (a) / sizeof ((a)[0]))
914 struct zyd_softc *sc = rf->rf_sc;
915 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
916 static const uint32_t rfini[] = ZYD_RFMD_RF;
917 int i, error;
918
919
920 for (i = 0; i < N(phyini); i++) {
921 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
922 if (error != 0)
923 return error;
924 }
925
926
927 for (i = 0; i < N(rfini); i++) {
928 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
929 return error;
930 }
931 return 0;
932 #undef N
933 }
934
935 int
936 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
937 {
938 struct zyd_softc *sc = rf->rf_sc;
939
940 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
941 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
942
943 return 0;
944 }
945
946 int
947 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
948 {
949 struct zyd_softc *sc = rf->rf_sc;
950 static const struct {
951 uint32_t r1, r2;
952 } rfprog[] = ZYD_RFMD_CHANTABLE;
953
954 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
955 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
956
957 return 0;
958 }
959
960
961
962
963 int
964 zyd_al2230_init(struct zyd_rf *rf)
965 {
966 #define N(a) (sizeof (a) / sizeof ((a)[0]))
967 struct zyd_softc *sc = rf->rf_sc;
968 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
969 static const uint32_t rfini[] = ZYD_AL2230_RF;
970 int i, error;
971
972
973 for (i = 0; i < N(phyini); i++) {
974 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
975 if (error != 0)
976 return error;
977 }
978
979
980 for (i = 0; i < N(rfini); i++) {
981 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
982 return error;
983 }
984 return 0;
985 #undef N
986 }
987
988 int
989 zyd_al2230_init_b(struct zyd_rf *rf)
990 {
991 #define N(a) (sizeof (a) / sizeof ((a)[0]))
992 struct zyd_softc *sc = rf->rf_sc;
993 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
994 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
995 int i, error;
996
997
998 for (i = 0; i < N(phyini); i++) {
999 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1000 if (error != 0)
1001 return error;
1002 }
1003
1004
1005 for (i = 0; i < N(rfini); i++) {
1006 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1007 return error;
1008 }
1009 return 0;
1010 #undef N
1011 }
1012
1013 int
1014 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1015 {
1016 struct zyd_softc *sc = rf->rf_sc;
1017 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1018
1019 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1020 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1021
1022 return 0;
1023 }
1024
1025 int
1026 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1027 {
1028 struct zyd_softc *sc = rf->rf_sc;
1029 static const struct {
1030 uint32_t r1, r2, r3;
1031 } rfprog[] = ZYD_AL2230_CHANTABLE;
1032
1033 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1034 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1035 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1036
1037 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1038 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1039
1040 return 0;
1041 }
1042
1043
1044
1045
1046 int
1047 zyd_al7230B_init(struct zyd_rf *rf)
1048 {
1049 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1050 struct zyd_softc *sc = rf->rf_sc;
1051 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1052 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1053 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1054 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1055 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1056 int i, error;
1057
1058
1059
1060
1061 for (i = 0; i < N(phyini_1); i++) {
1062 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1063 if (error != 0)
1064 return error;
1065 }
1066
1067 for (i = 0; i < N(rfini_1); i++) {
1068 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1069 return error;
1070 }
1071
1072 for (i = 0; i < N(phyini_2); i++) {
1073 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1074 if (error != 0)
1075 return error;
1076 }
1077
1078 for (i = 0; i < N(rfini_2); i++) {
1079 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1080 return error;
1081 }
1082
1083 for (i = 0; i < N(phyini_3); i++) {
1084 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1085 if (error != 0)
1086 return error;
1087 }
1088
1089 return 0;
1090 #undef N
1091 }
1092
1093 int
1094 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1095 {
1096 struct zyd_softc *sc = rf->rf_sc;
1097
1098 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1099 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1100
1101 return 0;
1102 }
1103
1104 int
1105 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1106 {
1107 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1108 struct zyd_softc *sc = rf->rf_sc;
1109 static const struct {
1110 uint32_t r1, r2;
1111 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1112 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1113 int i, error;
1114
1115 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1116 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1117
1118 for (i = 0; i < N(rfsc); i++) {
1119 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1120 return error;
1121 }
1122
1123 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1124 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1125 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1126 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1127 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1128
1129 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1130 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1131 (void)zyd_rfwrite(sc, 0x3c9000);
1132
1133 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1134 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1135 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1136
1137 return 0;
1138 #undef N
1139 }
1140
1141
1142
1143
1144 int
1145 zyd_al2210_init(struct zyd_rf *rf)
1146 {
1147 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1148 struct zyd_softc *sc = rf->rf_sc;
1149 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1150 static const uint32_t rfini[] = ZYD_AL2210_RF;
1151 uint32_t tmp;
1152 int i, error;
1153
1154 (void)zyd_write32(sc, ZYD_CR18, 2);
1155
1156
1157 for (i = 0; i < N(phyini); i++) {
1158 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1159 if (error != 0)
1160 return error;
1161 }
1162
1163 for (i = 0; i < N(rfini); i++) {
1164 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1165 return error;
1166 }
1167 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1168 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1169 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1170 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1171 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1172 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1173 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1174 (void)zyd_write32(sc, ZYD_CR18, 3);
1175
1176 return 0;
1177 #undef N
1178 }
1179
1180 int
1181 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1182 {
1183
1184
1185 return 0;
1186 }
1187
1188 int
1189 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1190 {
1191 struct zyd_softc *sc = rf->rf_sc;
1192 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1193 uint32_t tmp;
1194
1195 (void)zyd_write32(sc, ZYD_CR18, 2);
1196 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1197 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1198 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1199 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1200 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1201
1202 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1204
1205
1206 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1207
1208 (void)zyd_write32(sc, ZYD_CR18, 3);
1209
1210 return 0;
1211 }
1212
1213
1214
1215
1216 int
1217 zyd_gct_init(struct zyd_rf *rf)
1218 {
1219 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1220 struct zyd_softc *sc = rf->rf_sc;
1221 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1222 static const uint32_t rfini[] = ZYD_GCT_RF;
1223 int i, error;
1224
1225
1226 for (i = 0; i < N(phyini); i++) {
1227 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1228 if (error != 0)
1229 return error;
1230 }
1231
1232 for (i = 0; i < N(rfini); i++) {
1233 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1234 return error;
1235 }
1236 return 0;
1237 #undef N
1238 }
1239
1240 int
1241 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1242 {
1243
1244
1245 return 0;
1246 }
1247
1248 int
1249 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1250 {
1251 struct zyd_softc *sc = rf->rf_sc;
1252 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1253
1254 (void)zyd_rfwrite(sc, 0x1c0000);
1255 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1256 (void)zyd_rfwrite(sc, 0x1c0008);
1257
1258 return 0;
1259 }
1260
1261
1262
1263
1264 int
1265 zyd_maxim_init(struct zyd_rf *rf)
1266 {
1267 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1268 struct zyd_softc *sc = rf->rf_sc;
1269 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1270 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1271 uint16_t tmp;
1272 int i, error;
1273
1274
1275 for (i = 0; i < N(phyini); i++) {
1276 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1277 if (error != 0)
1278 return error;
1279 }
1280 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1281 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1282
1283
1284 for (i = 0; i < N(rfini); i++) {
1285 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1286 return error;
1287 }
1288 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1289 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1290
1291 return 0;
1292 #undef N
1293 }
1294
1295 int
1296 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1297 {
1298
1299
1300 return 0;
1301 }
1302
1303 int
1304 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1305 {
1306 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1307 struct zyd_softc *sc = rf->rf_sc;
1308 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1309 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1310 static const struct {
1311 uint32_t r1, r2;
1312 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1313 uint16_t tmp;
1314 int i, error;
1315
1316
1317
1318
1319
1320
1321
1322 for (i = 0; i < N(phyini); i++) {
1323 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1324 if (error != 0)
1325 return error;
1326 }
1327 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1328 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1329
1330
1331 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1332 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1333
1334
1335 for (i = 2; i < N(rfini); i++) {
1336 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1337 return error;
1338 }
1339 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1340 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1341
1342 return 0;
1343 #undef N
1344 }
1345
1346
1347
1348
1349 int
1350 zyd_maxim2_init(struct zyd_rf *rf)
1351 {
1352 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1353 struct zyd_softc *sc = rf->rf_sc;
1354 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1355 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1356 uint16_t tmp;
1357 int i, error;
1358
1359
1360 for (i = 0; i < N(phyini); i++) {
1361 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1362 if (error != 0)
1363 return error;
1364 }
1365 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1366 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1367
1368
1369 for (i = 0; i < N(rfini); i++) {
1370 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1371 return error;
1372 }
1373 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1374 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1375
1376 return 0;
1377 #undef N
1378 }
1379
1380 int
1381 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1382 {
1383
1384
1385 return 0;
1386 }
1387
1388 int
1389 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1390 {
1391 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1392 struct zyd_softc *sc = rf->rf_sc;
1393 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1394 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1395 static const struct {
1396 uint32_t r1, r2;
1397 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1398 uint16_t tmp;
1399 int i, error;
1400
1401
1402
1403
1404
1405
1406
1407 for (i = 0; i < N(phyini); i++) {
1408 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1409 if (error != 0)
1410 return error;
1411 }
1412 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1413 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1414
1415
1416 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1417 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1418
1419
1420 for (i = 2; i < N(rfini); i++) {
1421 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1422 return error;
1423 }
1424 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1425 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1426
1427 return 0;
1428 #undef N
1429 }
1430
1431 int
1432 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1433 {
1434 struct zyd_rf *rf = &sc->sc_rf;
1435
1436 rf->rf_sc = sc;
1437
1438 switch (type) {
1439 case ZYD_RF_RFMD:
1440 rf->init = zyd_rfmd_init;
1441 rf->switch_radio = zyd_rfmd_switch_radio;
1442 rf->set_channel = zyd_rfmd_set_channel;
1443 rf->width = 24;
1444 break;
1445 case ZYD_RF_AL2230:
1446 if (sc->mac_rev == ZYD_ZD1211B)
1447 rf->init = zyd_al2230_init_b;
1448 else
1449 rf->init = zyd_al2230_init;
1450 rf->switch_radio = zyd_al2230_switch_radio;
1451 rf->set_channel = zyd_al2230_set_channel;
1452 rf->width = 24;
1453 break;
1454 case ZYD_RF_AL7230B:
1455 rf->init = zyd_al7230B_init;
1456 rf->switch_radio = zyd_al7230B_switch_radio;
1457 rf->set_channel = zyd_al7230B_set_channel;
1458 rf->width = 24;
1459 break;
1460 case ZYD_RF_AL2210:
1461 rf->init = zyd_al2210_init;
1462 rf->switch_radio = zyd_al2210_switch_radio;
1463 rf->set_channel = zyd_al2210_set_channel;
1464 rf->width = 24;
1465 break;
1466 case ZYD_RF_GCT:
1467 rf->init = zyd_gct_init;
1468 rf->switch_radio = zyd_gct_switch_radio;
1469 rf->set_channel = zyd_gct_set_channel;
1470 rf->width = 21;
1471 break;
1472 case ZYD_RF_MAXIM_NEW:
1473 rf->init = zyd_maxim_init;
1474 rf->switch_radio = zyd_maxim_switch_radio;
1475 rf->set_channel = zyd_maxim_set_channel;
1476 rf->width = 18;
1477 break;
1478 case ZYD_RF_MAXIM_NEW2:
1479 rf->init = zyd_maxim2_init;
1480 rf->switch_radio = zyd_maxim2_switch_radio;
1481 rf->set_channel = zyd_maxim2_set_channel;
1482 rf->width = 18;
1483 break;
1484 default:
1485 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1486 sc->sc_dev.dv_xname, zyd_rf_name(type));
1487 return EINVAL;
1488 }
1489 return 0;
1490 }
1491
1492 const char *
1493 zyd_rf_name(uint8_t type)
1494 {
1495 static const char * const zyd_rfs[] = {
1496 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1497 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1498 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1499 "PHILIPS"
1500 };
1501 return zyd_rfs[(type > 15) ? 0 : type];
1502 }
1503
1504 int
1505 zyd_hw_init(struct zyd_softc *sc)
1506 {
1507 struct zyd_rf *rf = &sc->sc_rf;
1508 const struct zyd_phy_pair *phyp;
1509 int error;
1510
1511
1512 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1513
1514 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1515 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1516
1517
1518 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1519
1520 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1521 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1522
1523
1524 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1525
1526
1527 zyd_lock_phy(sc);
1528 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1529 for (; phyp->reg != 0; phyp++) {
1530 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1531 goto fail;
1532 }
1533 zyd_unlock_phy(sc);
1534
1535
1536 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1537 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1538
1539 if (sc->mac_rev == ZYD_ZD1211) {
1540 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1541 } else {
1542 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1543 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1544 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1545 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1546 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1547 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1548 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1549 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1550 }
1551
1552 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1553 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1554 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1555 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1556 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1557 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1558 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1559 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1560 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1561 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1562 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1563 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1564 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1565 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1566 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1567 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1568 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1569
1570
1571 zyd_lock_phy(sc);
1572 error = (*rf->init)(rf);
1573 zyd_unlock_phy(sc);
1574 if (error != 0) {
1575 printf("%s: radio initialization failed\n",
1576 sc->sc_dev.dv_xname);
1577 goto fail;
1578 }
1579
1580
1581 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1582 goto fail;
1583
1584 fail: return error;
1585 }
1586
1587 int
1588 zyd_read_eeprom(struct zyd_softc *sc)
1589 {
1590 struct ieee80211com *ic = &sc->sc_ic;
1591 uint32_t tmp;
1592 uint16_t val;
1593 int i;
1594
1595
1596 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1597 ic->ic_myaddr[0] = tmp & 0xff;
1598 ic->ic_myaddr[1] = tmp >> 8;
1599 ic->ic_myaddr[2] = tmp >> 16;
1600 ic->ic_myaddr[3] = tmp >> 24;
1601 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1602 ic->ic_myaddr[4] = tmp & 0xff;
1603 ic->ic_myaddr[5] = tmp >> 8;
1604
1605 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1606 sc->rf_rev = tmp & 0x0f;
1607 sc->pa_rev = (tmp >> 16) & 0x0f;
1608
1609
1610 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1611 sc->regdomain = tmp >> 16;
1612 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1613
1614
1615 for (i = 0; i < 7; i++) {
1616 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1617 sc->pwr_cal[i * 2] = val >> 8;
1618 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1619
1620 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1621 sc->pwr_int[i * 2] = val >> 8;
1622 sc->pwr_int[i * 2 + 1] = val & 0xff;
1623
1624 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1625 sc->ofdm36_cal[i * 2] = val >> 8;
1626 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1627
1628 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1629 sc->ofdm48_cal[i * 2] = val >> 8;
1630 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1631
1632 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1633 sc->ofdm54_cal[i * 2] = val >> 8;
1634 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1635 }
1636 return 0;
1637 }
1638
1639 int
1640 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1641 {
1642 uint32_t tmp;
1643
1644 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1645 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1646
1647 tmp = addr[5] << 8 | addr[4];
1648 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1649
1650 return 0;
1651 }
1652
1653 int
1654 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1655 {
1656 uint32_t tmp;
1657
1658 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1659 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1660
1661 tmp = addr[5] << 8 | addr[4];
1662 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1663
1664 return 0;
1665 }
1666
1667 int
1668 zyd_switch_radio(struct zyd_softc *sc, int on)
1669 {
1670 struct zyd_rf *rf = &sc->sc_rf;
1671 int error;
1672
1673 zyd_lock_phy(sc);
1674 error = (*rf->switch_radio)(rf, on);
1675 zyd_unlock_phy(sc);
1676
1677 return error;
1678 }
1679
1680 void
1681 zyd_set_led(struct zyd_softc *sc, int which, int on)
1682 {
1683 uint32_t tmp;
1684
1685 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1686 tmp &= ~which;
1687 if (on)
1688 tmp |= which;
1689 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1690 }
1691
1692 int
1693 zyd_set_rxfilter(struct zyd_softc *sc)
1694 {
1695 uint32_t rxfilter;
1696
1697 switch (sc->sc_ic.ic_opmode) {
1698 case IEEE80211_M_STA:
1699 rxfilter = ZYD_FILTER_BSS;
1700 break;
1701 case IEEE80211_M_IBSS:
1702 case IEEE80211_M_HOSTAP:
1703 rxfilter = ZYD_FILTER_HOSTAP;
1704 break;
1705 case IEEE80211_M_MONITOR:
1706 rxfilter = ZYD_FILTER_MONITOR;
1707 break;
1708 default:
1709
1710 return EINVAL;
1711 }
1712 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1713 }
1714
1715 void
1716 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1717 {
1718 struct ieee80211com *ic = &sc->sc_ic;
1719 struct zyd_rf *rf = &sc->sc_rf;
1720 u_int chan;
1721
1722 chan = ieee80211_chan2ieee(ic, c);
1723 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1724 return;
1725
1726 zyd_lock_phy(sc);
1727
1728 (*rf->set_channel)(rf, chan);
1729
1730
1731 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1732 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1733
1734 if (sc->mac_rev == ZYD_ZD1211B) {
1735 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1736 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1737 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1738
1739 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1740 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1741 }
1742
1743 zyd_unlock_phy(sc);
1744 }
1745
1746 int
1747 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1748 {
1749
1750 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1751 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1752 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1753
1754 return 0;
1755 }
1756
1757 uint8_t
1758 zyd_plcp_signal(int rate)
1759 {
1760 switch (rate) {
1761
1762 case 2: return 0x0;
1763 case 4: return 0x1;
1764 case 11: return 0x2;
1765 case 22: return 0x3;
1766
1767
1768 case 12: return 0xb;
1769 case 18: return 0xf;
1770 case 24: return 0xa;
1771 case 36: return 0xe;
1772 case 48: return 0x9;
1773 case 72: return 0xd;
1774 case 96: return 0x8;
1775 case 108: return 0xc;
1776
1777
1778 default: return 0xff;
1779 }
1780 }
1781
1782 void
1783 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1784 {
1785 struct zyd_softc *sc = (struct zyd_softc *)priv;
1786 const struct zyd_cmd *cmd;
1787 uint32_t len;
1788
1789 if (status != USBD_NORMAL_COMPLETION) {
1790 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1791 return;
1792
1793 if (status == USBD_STALLED) {
1794 usbd_clear_endpoint_stall_async(
1795 sc->zyd_ep[ZYD_ENDPT_IIN]);
1796 }
1797 return;
1798 }
1799
1800 cmd = (const struct zyd_cmd *)sc->ibuf;
1801
1802 if (letoh16(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1803 struct zyd_notif_retry *retry =
1804 (struct zyd_notif_retry *)cmd->data;
1805 struct ieee80211com *ic = &sc->sc_ic;
1806 struct ifnet *ifp = &ic->ic_if;
1807 struct ieee80211_node *ni;
1808
1809 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1810 letoh16(retry->rate), ether_sprintf(retry->macaddr),
1811 letoh16(retry->count) & 0xff, letoh16(retry->count)));
1812
1813
1814
1815
1816
1817
1818 if (ic->ic_opmode != IEEE80211_M_STA) {
1819 ni = ieee80211_find_node(ic, retry->macaddr);
1820 if (ni == NULL)
1821 return;
1822 } else
1823 ni = ic->ic_bss;
1824
1825 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1826
1827 if (letoh16(retry->count) & 0x100)
1828 ifp->if_oerrors++;
1829
1830 } else if (letoh16(cmd->code) == ZYD_NOTIF_IORD) {
1831 if (letoh16(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1832 return;
1833
1834 if (sc->odata == NULL)
1835 return;
1836
1837
1838 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1839 bcopy(cmd->data, sc->odata, sc->olen);
1840
1841 wakeup(sc);
1842
1843 } else {
1844 printf("%s: unknown notification %x\n", sc->sc_dev.dv_xname,
1845 letoh16(cmd->code));
1846 }
1847 }
1848
1849 void
1850 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1851 {
1852 struct ieee80211com *ic = &sc->sc_ic;
1853 struct ifnet *ifp = &ic->ic_if;
1854 struct ieee80211_node *ni;
1855 struct ieee80211_frame *wh;
1856 const struct zyd_plcphdr *plcp;
1857 const struct zyd_rx_stat *stat;
1858 struct mbuf *m;
1859 int rlen, s;
1860
1861 if (len < ZYD_MIN_FRAGSZ) {
1862 printf("%s: frame too short (length=%d)\n",
1863 sc->sc_dev.dv_xname, len);
1864 ifp->if_ierrors++;
1865 return;
1866 }
1867
1868 plcp = (const struct zyd_plcphdr *)buf;
1869 stat = (const struct zyd_rx_stat *)
1870 (buf + len - sizeof (struct zyd_rx_stat));
1871
1872 if (stat->flags & ZYD_RX_ERROR) {
1873 DPRINTF(("%s: RX status indicated error (%x)\n",
1874 sc->sc_dev.dv_xname, stat->flags));
1875 ifp->if_ierrors++;
1876 return;
1877 }
1878
1879
1880 rlen = len - sizeof (struct zyd_plcphdr) -
1881 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1882
1883
1884 MGETHDR(m, M_DONTWAIT, MT_DATA);
1885 if (m == NULL) {
1886 printf("%s: could not allocate rx mbuf\n",
1887 sc->sc_dev.dv_xname);
1888 ifp->if_ierrors++;
1889 return;
1890 }
1891 if (rlen > MHLEN) {
1892 MCLGET(m, M_DONTWAIT);
1893 if (!(m->m_flags & M_EXT)) {
1894 printf("%s: could not allocate rx mbuf cluster\n",
1895 sc->sc_dev.dv_xname);
1896 m_freem(m);
1897 ifp->if_ierrors++;
1898 return;
1899 }
1900 }
1901 m->m_pkthdr.rcvif = ifp;
1902 m->m_pkthdr.len = m->m_len = rlen;
1903 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1904
1905 #if NBPFILTER > 0
1906 if (sc->sc_drvbpf != NULL) {
1907 struct mbuf mb;
1908 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1909 static const uint8_t rates[] = {
1910
1911 2, 4, 11, 22, 0, 0, 0, 0,
1912 96, 48, 24, 12, 108, 72, 36, 18
1913 };
1914
1915 tap->wr_flags = 0;
1916 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1917 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1918 tap->wr_rssi = stat->rssi;
1919 tap->wr_rate = rates[plcp->signal & 0xf];
1920
1921 mb.m_data = (caddr_t)tap;
1922 mb.m_len = sc->sc_rxtap_len;
1923 mb.m_next = m;
1924 mb.m_nextpkt = NULL;
1925 mb.m_type = 0;
1926 mb.m_flags = 0;
1927 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1928 }
1929 #endif
1930
1931 s = splnet();
1932 wh = mtod(m, struct ieee80211_frame *);
1933 ni = ieee80211_find_rxnode(ic, wh);
1934 ieee80211_input(ifp, m, ni, stat->rssi, 0);
1935
1936
1937 ieee80211_release_node(ic, ni);
1938
1939 splx(s);
1940 }
1941
1942 void
1943 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1944 {
1945 struct zyd_rx_data *data = priv;
1946 struct zyd_softc *sc = data->sc;
1947 struct ieee80211com *ic = &sc->sc_ic;
1948 struct ifnet *ifp = &ic->ic_if;
1949 const struct zyd_rx_desc *desc;
1950 int len;
1951
1952 if (status != USBD_NORMAL_COMPLETION) {
1953 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1954 return;
1955
1956 if (status == USBD_STALLED)
1957 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1958
1959 goto skip;
1960 }
1961 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1962
1963 if (len < ZYD_MIN_RXBUFSZ) {
1964 printf("%s: xfer too short (length=%d)\n",
1965 sc->sc_dev.dv_xname, len);
1966 ifp->if_ierrors++;
1967 goto skip;
1968 }
1969
1970 desc = (const struct zyd_rx_desc *)
1971 (data->buf + len - sizeof (struct zyd_rx_desc));
1972
1973 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
1974 const uint8_t *p = data->buf, *end = p + len;
1975 int i;
1976
1977 DPRINTFN(3, ("received multi-frame transfer\n"));
1978
1979 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
1980 const uint16_t len = UGETW(desc->len[i]);
1981
1982 if (len == 0 || p + len > end)
1983 break;
1984
1985 zyd_rx_data(sc, p, len);
1986
1987 p += (len + 3) & ~3;
1988 }
1989 } else {
1990 DPRINTFN(3, ("received single-frame transfer\n"));
1991
1992 zyd_rx_data(sc, data->buf, len);
1993 }
1994
1995 skip:
1996 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
1997 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
1998 USBD_NO_TIMEOUT, zyd_rxeof);
1999 (void)usbd_transfer(xfer);
2000 }
2001
2002 void
2003 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2004 {
2005 struct zyd_tx_data *data = priv;
2006 struct zyd_softc *sc = data->sc;
2007 struct ieee80211com *ic = &sc->sc_ic;
2008 struct ifnet *ifp = &ic->ic_if;
2009 int s;
2010
2011 if (status != USBD_NORMAL_COMPLETION) {
2012 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2013 return;
2014
2015 printf("%s: could not transmit buffer: %s\n",
2016 sc->sc_dev.dv_xname, usbd_errstr(status));
2017
2018 if (status == USBD_STALLED) {
2019 usbd_clear_endpoint_stall_async(
2020 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2021 }
2022 ifp->if_oerrors++;
2023 return;
2024 }
2025
2026 s = splnet();
2027
2028
2029 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2030
2031 ieee80211_release_node(ic, data->ni);
2032 data->ni = NULL;
2033
2034 sc->tx_queued--;
2035 ifp->if_opackets++;
2036
2037 sc->tx_timer = 0;
2038 ifp->if_flags &= ~IFF_OACTIVE;
2039 zyd_start(ifp);
2040
2041 splx(s);
2042 }
2043
2044 int
2045 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2046 {
2047 struct ieee80211com *ic = &sc->sc_ic;
2048 struct ifnet *ifp = &ic->ic_if;
2049 struct zyd_tx_desc *desc;
2050 struct zyd_tx_data *data;
2051 struct ieee80211_frame *wh;
2052 int xferlen, totlen, rate;
2053 uint16_t pktlen;
2054 usbd_status error;
2055
2056 wh = mtod(m0, struct ieee80211_frame *);
2057
2058 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2059 m0 = ieee80211_wep_crypt(ifp, m0, 1);
2060 if (m0 == NULL)
2061 return ENOBUFS;
2062
2063
2064 wh = mtod(m0, struct ieee80211_frame *);
2065 }
2066
2067
2068 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2069 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2070 IEEE80211_FC0_TYPE_MGT)) {
2071
2072 rate = ni->ni_rates.rs_rates[0];
2073 } else if (ic->ic_fixed_rate != -1) {
2074 rate = ic->ic_sup_rates[ic->ic_curmode].
2075 rs_rates[ic->ic_fixed_rate];
2076 } else
2077 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2078 rate &= IEEE80211_RATE_VAL;
2079 if (rate == 0)
2080 rate = 2;
2081
2082 data = &sc->tx_data[0];
2083 desc = (struct zyd_tx_desc *)data->buf;
2084
2085 data->ni = ni;
2086
2087 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2088 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2089
2090
2091 desc->len = htole16(totlen);
2092
2093 desc->flags = ZYD_TX_FLAG_BACKOFF;
2094 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2095
2096 if (totlen > ic->ic_rtsthreshold) {
2097 desc->flags |= ZYD_TX_FLAG_RTS;
2098 } else if (ZYD_RATE_IS_OFDM(rate) &&
2099 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2100 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2101 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2102 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2103 desc->flags |= ZYD_TX_FLAG_RTS;
2104 }
2105 } else
2106 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2107
2108 if ((wh->i_fc[0] &
2109 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2110 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2111 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2112
2113 desc->phy = zyd_plcp_signal(rate);
2114 if (ZYD_RATE_IS_OFDM(rate)) {
2115 desc->phy |= ZYD_TX_PHY_OFDM;
2116 if (ic->ic_curmode == IEEE80211_MODE_11A)
2117 desc->phy |= ZYD_TX_PHY_5GHZ;
2118 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2119 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2120
2121
2122 pktlen = sizeof (struct zyd_tx_desc) + 10;
2123 if (sc->mac_rev == ZYD_ZD1211)
2124 pktlen += totlen;
2125 desc->pktlen = htole16(pktlen);
2126
2127 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2128 desc->plcp_service = 0;
2129 if (rate == 22) {
2130 const int remainder = (16 * totlen) % 22;
2131 if (remainder != 0 && remainder < 7)
2132 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2133 }
2134
2135 #if NBPFILTER > 0
2136 if (sc->sc_drvbpf != NULL) {
2137 struct mbuf mb;
2138 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2139
2140 tap->wt_flags = 0;
2141 tap->wt_rate = rate;
2142 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
2143 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
2144
2145 mb.m_data = (caddr_t)tap;
2146 mb.m_len = sc->sc_txtap_len;
2147 mb.m_next = m0;
2148 mb.m_nextpkt = NULL;
2149 mb.m_type = 0;
2150 mb.m_flags = 0;
2151 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2152 }
2153 #endif
2154
2155 m_copydata(m0, 0, m0->m_pkthdr.len,
2156 data->buf + sizeof (struct zyd_tx_desc));
2157
2158 DPRINTFN(10, ("%s: sending data frame len=%u rate=%u xferlen=%u\n",
2159 sc->sc_dev.dv_xname, m0->m_pkthdr.len, rate, xferlen));
2160
2161 m_freem(m0);
2162
2163 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2164 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2165 ZYD_TX_TIMEOUT, zyd_txeof);
2166 error = usbd_transfer(data->xfer);
2167 if (error != USBD_IN_PROGRESS && error != 0) {
2168 ifp->if_oerrors++;
2169 return EIO;
2170 }
2171 sc->tx_queued++;
2172
2173 return 0;
2174 }
2175
2176 void
2177 zyd_start(struct ifnet *ifp)
2178 {
2179 struct zyd_softc *sc = ifp->if_softc;
2180 struct ieee80211com *ic = &sc->sc_ic;
2181 struct ieee80211_node *ni;
2182 struct mbuf *m0;
2183
2184
2185
2186
2187
2188 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2189 return;
2190
2191 for (;;) {
2192 IF_POLL(&ic->ic_mgtq, m0);
2193 if (m0 != NULL) {
2194 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2195 ifp->if_flags |= IFF_OACTIVE;
2196 break;
2197 }
2198 IF_DEQUEUE(&ic->ic_mgtq, m0);
2199
2200 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2201 m0->m_pkthdr.rcvif = NULL;
2202 #if NBPFILTER > 0
2203 if (ic->ic_rawbpf != NULL)
2204 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
2205 #endif
2206 if (zyd_tx_data(sc, m0, ni) != 0)
2207 break;
2208 } else {
2209 if (ic->ic_state != IEEE80211_S_RUN)
2210 break;
2211 IFQ_POLL(&ifp->if_snd, m0);
2212 if (m0 == NULL)
2213 break;
2214 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2215 ifp->if_flags |= IFF_OACTIVE;
2216 break;
2217 }
2218 IFQ_DEQUEUE(&ifp->if_snd, m0);
2219 #if NBPFILTER > 0
2220 if (ifp->if_bpf != NULL)
2221 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
2222 #endif
2223 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
2224 ifp->if_oerrors++;
2225 continue;
2226 }
2227 #if NBPFILTER > 0
2228 if (ic->ic_rawbpf != NULL)
2229 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
2230 #endif
2231 if (zyd_tx_data(sc, m0, ni) != 0) {
2232 if (ni != NULL)
2233 ieee80211_release_node(ic, ni);
2234 ifp->if_oerrors++;
2235 break;
2236 }
2237 }
2238
2239 sc->tx_timer = 5;
2240 ifp->if_timer = 1;
2241 }
2242 }
2243
2244 void
2245 zyd_watchdog(struct ifnet *ifp)
2246 {
2247 struct zyd_softc *sc = ifp->if_softc;
2248
2249 ifp->if_timer = 0;
2250
2251 if (sc->tx_timer > 0) {
2252 if (--sc->tx_timer == 0) {
2253 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2254
2255 ifp->if_oerrors++;
2256 return;
2257 }
2258 ifp->if_timer = 1;
2259 }
2260
2261 ieee80211_watchdog(ifp);
2262 }
2263
2264 int
2265 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2266 {
2267 struct zyd_softc *sc = ifp->if_softc;
2268 struct ieee80211com *ic = &sc->sc_ic;
2269 struct ifaddr *ifa;
2270 struct ifreq *ifr;
2271 int s, error = 0;
2272
2273 s = splnet();
2274
2275 switch (cmd) {
2276 case SIOCSIFADDR:
2277 ifa = (struct ifaddr *)data;
2278 ifp->if_flags |= IFF_UP;
2279 #ifdef INET
2280 if (ifa->ifa_addr->sa_family == AF_INET)
2281 arp_ifinit(&ic->ic_ac, ifa);
2282 #endif
2283
2284 case SIOCSIFFLAGS:
2285 if (ifp->if_flags & IFF_UP) {
2286 if (!(ifp->if_flags & IFF_RUNNING))
2287 zyd_init(ifp);
2288 } else {
2289 if (ifp->if_flags & IFF_RUNNING)
2290 zyd_stop(ifp, 1);
2291 }
2292 break;
2293
2294 case SIOCADDMULTI:
2295 case SIOCDELMULTI:
2296 ifr = (struct ifreq *)data;
2297 error = (cmd == SIOCADDMULTI) ?
2298 ether_addmulti(ifr, &ic->ic_ac) :
2299 ether_delmulti(ifr, &ic->ic_ac);
2300 if (error == ENETRESET)
2301 error = 0;
2302 break;
2303
2304 case SIOCS80211CHANNEL:
2305
2306
2307
2308
2309
2310 error = ieee80211_ioctl(ifp, cmd, data);
2311 if (error == ENETRESET &&
2312 ic->ic_opmode == IEEE80211_M_MONITOR) {
2313 zyd_set_chan(sc, ic->ic_ibss_chan);
2314 error = 0;
2315 }
2316 break;
2317
2318 default:
2319 error = ieee80211_ioctl(ifp, cmd, data);
2320 }
2321
2322 if (error == ENETRESET) {
2323 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2324 (IFF_RUNNING | IFF_UP))
2325 zyd_init(ifp);
2326 error = 0;
2327 }
2328
2329 splx(s);
2330
2331 return error;
2332 }
2333
2334 int
2335 zyd_init(struct ifnet *ifp)
2336 {
2337 struct zyd_softc *sc = ifp->if_softc;
2338 struct ieee80211com *ic = &sc->sc_ic;
2339 int i, error;
2340
2341 zyd_stop(ifp, 0);
2342
2343 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2344 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2345 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2346 if (error != 0)
2347 return error;
2348
2349
2350 DPRINTF(("setting encryption type\n"));
2351 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2352 if (error != 0)
2353 return error;
2354
2355
2356 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2357 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2358
2359 (void)zyd_set_rxfilter(sc);
2360
2361
2362 (void)zyd_switch_radio(sc, 1);
2363
2364
2365 if (ic->ic_curmode == IEEE80211_MODE_11B)
2366 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2367 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2368 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2369 else
2370 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2371
2372
2373 if (ic->ic_curmode == IEEE80211_MODE_11B)
2374 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2375 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2376 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2377 else
2378 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2379
2380
2381 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2382 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2383
2384
2385 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2386
2387
2388
2389
2390 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2391 printf("%s: could not allocate Tx list\n",
2392 sc->sc_dev.dv_xname);
2393 goto fail;
2394 }
2395 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2396 printf("%s: could not allocate Rx list\n",
2397 sc->sc_dev.dv_xname);
2398 goto fail;
2399 }
2400
2401
2402
2403
2404 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2405 struct zyd_rx_data *data = &sc->rx_data[i];
2406
2407 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2408 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2409 USBD_NO_TIMEOUT, zyd_rxeof);
2410 error = usbd_transfer(data->xfer);
2411 if (error != USBD_IN_PROGRESS && error != 0) {
2412 printf("%s: could not queue Rx transfer\n",
2413 sc->sc_dev.dv_xname);
2414 goto fail;
2415 }
2416 }
2417
2418 ifp->if_flags &= ~IFF_OACTIVE;
2419 ifp->if_flags |= IFF_RUNNING;
2420
2421 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2422 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2423 else
2424 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2425
2426 return 0;
2427
2428 fail: zyd_stop(ifp, 1);
2429 return error;
2430 }
2431
2432 void
2433 zyd_stop(struct ifnet *ifp, int disable)
2434 {
2435 struct zyd_softc *sc = ifp->if_softc;
2436 struct ieee80211com *ic = &sc->sc_ic;
2437
2438 sc->tx_timer = 0;
2439 ifp->if_timer = 0;
2440 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2441
2442 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2443
2444
2445 (void)zyd_switch_radio(sc, 0);
2446
2447
2448 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2449
2450
2451 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2452
2453 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2454 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2455
2456 zyd_free_rx_list(sc);
2457 zyd_free_tx_list(sc);
2458 }
2459
2460 int
2461 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2462 {
2463 usb_device_request_t req;
2464 uint16_t addr;
2465 uint8_t stat;
2466
2467 DPRINTF(("firmware size=%d\n", size));
2468
2469 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2470 req.bRequest = ZYD_DOWNLOADREQ;
2471 USETW(req.wIndex, 0);
2472
2473 addr = ZYD_FIRMWARE_START_ADDR;
2474 while (size > 0) {
2475 const int mlen = min(size, 4096);
2476
2477 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2478 addr));
2479
2480 USETW(req.wValue, addr);
2481 USETW(req.wLength, mlen);
2482 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2483 return EIO;
2484
2485 addr += mlen / 2;
2486 fw += mlen;
2487 size -= mlen;
2488 }
2489
2490
2491 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2492 req.bRequest = ZYD_DOWNLOADSTS;
2493 USETW(req.wValue, 0);
2494 USETW(req.wIndex, 0);
2495 USETW(req.wLength, sizeof stat);
2496 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2497 return EIO;
2498
2499 return (stat & 0x80) ? EIO : 0;
2500 }
2501
2502 void
2503 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2504 {
2505 struct zyd_softc *sc = arg;
2506 struct zyd_node *zn = (struct zyd_node *)ni;
2507
2508 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2509 }
2510
2511 void
2512 zyd_amrr_timeout(void *arg)
2513 {
2514 struct zyd_softc *sc = arg;
2515 struct ieee80211com *ic = &sc->sc_ic;
2516 int s;
2517
2518 s = splnet();
2519 if (ic->ic_opmode == IEEE80211_M_STA)
2520 zyd_iter_func(sc, ic->ic_bss);
2521 else
2522 ieee80211_iterate_nodes(ic, zyd_iter_func, sc);
2523 splx(s);
2524
2525 timeout_add(&sc->amrr_to, hz);
2526 }
2527
2528 void
2529 zyd_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2530 {
2531 struct zyd_softc *sc = ic->ic_softc;
2532 int i;
2533
2534 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2535
2536
2537 for (i = ni->ni_rates.rs_nrates - 1;
2538 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2539 i--);
2540 ni->ni_txrate = i;
2541 }
2542
2543 int
2544 zyd_activate(struct device *self, enum devact act)
2545 {
2546 switch (act) {
2547 case DVACT_ACTIVATE:
2548 break;
2549
2550 case DVACT_DEACTIVATE:
2551 break;
2552 }
2553 return 0;
2554 }