root/dev/pci/sv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sv_write
  2. sv_read
  3. sv_read_indirect
  4. sv_write_indirect
  5. sv_match
  6. sv_attach
  7. sv_dumpregs
  8. sv_intr
  9. sv_allocmem
  10. sv_freemem
  11. sv_open
  12. sv_close
  13. sv_query_encoding
  14. sv_set_params
  15. sv_round_blocksize
  16. sv_dma_init_input
  17. sv_dma_init_output
  18. sv_dma_output
  19. sv_dma_input
  20. sv_halt_out_dma
  21. sv_halt_in_dma
  22. sv_getdev
  23. sv_query_devinfo
  24. sv_mixer_set_port
  25. sv_mixer_get_port
  26. sv_init_mixer
  27. sv_malloc
  28. sv_free
  29. sv_mappage
  30. sv_get_props

    1 /*      $OpenBSD: sv.c,v 1.21 2005/09/11 18:17:08 mickey Exp $ */
    2 
    3 /*
    4  * Copyright (c) 1998 Constantine Paul Sapuntzakis
    5  * All rights reserved
    6  *
    7  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. The author's name or those of the contributors may be used to
   18  *    endorse or promote products derived from this software without 
   19  *    specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
   22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   31  * POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 /*
   35  * S3 SonicVibes driver
   36  *   Heavily based on the eap driver by Lennart Augustsson
   37  */
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/malloc.h>
   43 #include <sys/device.h>
   44 
   45 #include <dev/pci/pcireg.h>
   46 #include <dev/pci/pcivar.h>
   47 #include <dev/pci/pcidevs.h>
   48 
   49 #include <sys/audioio.h>
   50 #include <dev/audio_if.h>
   51 #include <dev/mulaw.h>
   52 #include <dev/auconv.h>
   53 
   54 #include <dev/ic/i8237reg.h>
   55 #include <dev/ic/s3_617.h>
   56 
   57 
   58 #include <machine/bus.h>
   59 
   60 #ifdef __OpenBSD__
   61 struct        cfdriver sv_cd = {
   62       NULL, "sv", DV_DULL
   63 };
   64 #endif
   65 
   66 #ifdef AUDIO_DEBUG
   67 #define DPRINTF(x)      if (svdebug) printf x
   68 #define DPRINTFN(n,x)   if (svdebug>(n)) printf x
   69 static int      svdebug = 100;
   70 #else
   71 #define DPRINTF(x)
   72 #define DPRINTFN(n,x)
   73 #endif
   74 
   75 int     sv_match(struct device *, void *, void *);
   76 static void     sv_attach(struct device *, struct device *, void *);
   77 int     sv_intr(void *);
   78 
   79 struct sv_dma {
   80         bus_dmamap_t map;
   81         caddr_t addr;
   82         bus_dma_segment_t segs[1];
   83         int nsegs;
   84         size_t size;
   85         struct sv_dma *next;
   86 };
   87 #define DMAADDR(map) ((map)->segs[0].ds_addr)
   88 #define KERNADDR(map) ((void *)((map)->addr))
   89 
   90 enum {
   91   SV_DMAA_CONFIGURED = 1,
   92   SV_DMAC_CONFIGURED = 2,
   93   SV_DMAA_TRIED_CONFIGURE = 4,
   94   SV_DMAC_TRIED_CONFIGURE = 8
   95 };
   96 
   97 struct sv_softc {
   98         struct device sc_dev;           /* base device */
   99         void *sc_ih;                    /* interrupt vectoring */
  100 
  101         pci_chipset_tag_t sc_pci_chipset_tag;
  102         pcitag_t  sc_pci_tag;
  103 
  104         bus_space_tag_t sc_iot;
  105         bus_space_handle_t sc_ioh;
  106         bus_space_handle_t sc_dmaa_ioh;
  107         bus_space_handle_t sc_dmac_ioh;
  108         bus_dma_tag_t sc_dmatag;        /* DMA tag */
  109 
  110         struct sv_dma *sc_dmas;
  111 
  112         void    (*sc_pintr)(void *);    /* dma completion intr handler */
  113         void    *sc_parg;               /* arg for sc_intr() */
  114 
  115         void    (*sc_rintr)(void *);    /* dma completion intr handler */
  116         void    *sc_rarg;               /* arg for sc_intr() */
  117         char    sc_enable;
  118         char    sc_trd;
  119 
  120         char    sc_dma_configured;
  121         u_int   sc_record_source;       /* recording source mask */
  122 };
  123 
  124 
  125 struct cfattach sv_ca = {
  126         sizeof(struct sv_softc), sv_match, sv_attach
  127 };
  128 
  129 struct audio_device sv_device = {
  130         "S3 SonicVibes",
  131         "",
  132         "sv"
  133 };
  134 
  135 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
  136 
  137 int     sv_allocmem(struct sv_softc *, size_t, size_t, struct sv_dma *);
  138 int     sv_freemem(struct sv_softc *, struct sv_dma *);
  139 
  140 int     sv_open(void *, int);
  141 void    sv_close(void *);
  142 int     sv_query_encoding(void *, struct audio_encoding *);
  143 int     sv_set_params(void *, int, int, struct audio_params *, struct audio_params *);
  144 int     sv_round_blocksize(void *, int);
  145 int     sv_dma_init_output(void *, void *, int);
  146 int     sv_dma_init_input(void *, void *, int);
  147 int     sv_dma_output(void *, void *, int, void (*)(void *), void *);
  148 int     sv_dma_input(void *, void *, int, void (*)(void *), void *);
  149 int     sv_halt_in_dma(void *);
  150 int     sv_halt_out_dma(void *);
  151 int     sv_getdev(void *, struct audio_device *);
  152 int     sv_mixer_set_port(void *, mixer_ctrl_t *);
  153 int     sv_mixer_get_port(void *, mixer_ctrl_t *);
  154 int     sv_query_devinfo(void *, mixer_devinfo_t *);
  155 void   *sv_malloc(void *, int, size_t, int, int);
  156 void    sv_free(void *, void *, int);
  157 paddr_t sv_mappage(void *, void *, off_t, int);
  158 int     sv_get_props(void *);
  159 
  160 void    sv_dumpregs(struct sv_softc *sc);
  161 
  162 struct audio_hw_if sv_hw_if = {
  163         sv_open,
  164         sv_close,
  165         NULL,
  166         sv_query_encoding,
  167         sv_set_params,
  168         sv_round_blocksize,
  169         NULL,
  170         sv_dma_init_output,
  171         sv_dma_init_input,
  172         sv_dma_output,
  173         sv_dma_input,
  174         sv_halt_out_dma,
  175         sv_halt_in_dma,
  176         NULL,
  177         sv_getdev,
  178         NULL,
  179         sv_mixer_set_port,
  180         sv_mixer_get_port,
  181         sv_query_devinfo,
  182         sv_malloc,
  183         sv_free,
  184         NULL,
  185         sv_mappage,
  186         sv_get_props,
  187         NULL,
  188         NULL
  189 };
  190 
  191 
  192 static __inline__ u_int8_t sv_read(struct sv_softc *, u_int8_t);
  193 static __inline__ u_int8_t sv_read_indirect(struct sv_softc *, u_int8_t);
  194 static __inline__ void sv_write(struct sv_softc *, u_int8_t, u_int8_t );
  195 static __inline__ void sv_write_indirect(struct sv_softc *, u_int8_t, u_int8_t );
  196 static void sv_init_mixer(struct sv_softc *);
  197 
  198 static __inline__ void
  199 sv_write (sc, reg, val)
  200      struct sv_softc *sc;
  201      u_int8_t reg, val;
  202      
  203 {
  204   bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
  205 }
  206 
  207 static __inline__ u_int8_t
  208 sv_read (sc, reg)
  209      struct sv_softc *sc;
  210      u_int8_t reg;
  211      
  212 {
  213   return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg));
  214 }
  215 
  216 static __inline__ u_int8_t
  217 sv_read_indirect (sc, reg)
  218      struct sv_softc *sc;
  219      u_int8_t reg;
  220 {
  221     u_int8_t iaddr = 0;
  222 
  223     if (sc->sc_trd > 0)
  224       iaddr |= SV_IADDR_TRD;
  225 
  226     iaddr |= (reg & SV_IADDR_MASK);
  227     sv_write (sc, SV_CODEC_IADDR, iaddr);
  228 
  229     return (sv_read(sc, SV_CODEC_IDATA));
  230 }
  231 
  232 static __inline__ void
  233 sv_write_indirect (sc, reg, val)
  234      struct sv_softc *sc;
  235      u_int8_t reg, val;
  236 {
  237     u_int8_t iaddr = 0;
  238 #ifdef DIAGNOSTIC
  239     if (reg > 0x3f) {
  240       printf ("Invalid register\n");
  241       return;
  242     }
  243 #endif
  244 
  245     if (reg == SV_DMA_DATA_FORMAT)
  246       iaddr |= SV_IADDR_MCE;
  247 
  248     if (sc->sc_trd > 0)
  249       iaddr |= SV_IADDR_TRD;
  250 
  251     iaddr |= (reg & SV_IADDR_MASK);
  252     sv_write (sc, SV_CODEC_IADDR, iaddr);
  253     sv_write (sc, SV_CODEC_IDATA, val);
  254 }
  255 
  256 int
  257 sv_match(parent, match, aux)
  258      struct device *parent;
  259      void *match, *aux;
  260 {
  261         struct pci_attach_args *pa = aux;
  262 
  263         if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
  264             PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
  265           return (1);
  266 
  267         return (0);
  268 }
  269 
  270 static void
  271 sv_attach(parent, self, aux)
  272      struct device *parent, *self;
  273      void *aux;
  274 
  275 {
  276   struct sv_softc *sc = (struct sv_softc *)self;
  277   struct pci_attach_args *pa = aux;
  278   pci_chipset_tag_t pc = pa->pa_pc;
  279   pci_intr_handle_t ih;
  280   bus_size_t iosize;
  281   char const *intrstr;
  282   u_int32_t  dmareg, dmaio; 
  283   u_int8_t   reg;
  284 
  285   sc->sc_pci_chipset_tag = pc;
  286   sc->sc_pci_tag = pa->pa_tag;
  287 
  288   /* Map the enhanced port only */
  289   if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, PCI_MAPREG_TYPE_IO, 0,
  290       &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0)) {
  291     printf (": Couldn't map enhanced synth I/O range\n");
  292     return;
  293   }
  294 
  295   sc->sc_dmatag = pa->pa_dmat;
  296 
  297   dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF);
  298   iosize = 0x10;
  299   dmaio =  dmareg & ~(iosize - 1);
  300   
  301   if (dmaio) {
  302     dmareg &= 0xF;
  303     
  304     if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmaa_ioh)) {
  305       /* The BIOS assigned us some bad I/O address! Make sure to clear
  306          and disable this DMA before we enable the device */
  307       pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 0);
  308 
  309       printf (": can't map DMA i/o space\n");
  310       goto enable;
  311     }
  312 
  313     pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF,
  314                    dmaio | dmareg | 
  315                    SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
  316     sc->sc_dma_configured |= SV_DMAA_CONFIGURED;
  317   }
  318 
  319   dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF);
  320   dmaio = dmareg & ~(iosize - 1);
  321   if (dmaio) {
  322     dmareg &= 0xF;
  323 
  324     if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmac_ioh)) {
  325       /* The BIOS assigned us some bad I/O address! Make sure to clear
  326          and disable this DMA before we enable the device */
  327       pci_conf_write (pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 
  328                       dmareg & ~SV_DMA_CHANNEL_ENABLE); 
  329       printf (": can't map DMA i/o space\n");
  330       goto enable;
  331     }
  332 
  333     pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 
  334                    dmaio | dmareg | SV_DMA_CHANNEL_ENABLE);
  335     sc->sc_dma_configured |= SV_DMAC_CONFIGURED;
  336   }
  337 
  338   /* Enable the device. */
  339  enable:
  340   sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
  341   sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
  342 
  343   /* initialize codec registers */
  344   reg = sv_read(sc, SV_CODEC_CONTROL);
  345   reg |= SV_CTL_RESET;
  346   sv_write(sc, SV_CODEC_CONTROL, reg);
  347   delay(50);
  348 
  349   reg = sv_read(sc, SV_CODEC_CONTROL);
  350   reg &= ~SV_CTL_RESET;
  351   reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
  352 
  353   /* This write clears the reset */
  354   sv_write(sc, SV_CODEC_CONTROL, reg);
  355   delay(50);
  356 
  357   /* This write actually shoves the new values in */
  358   sv_write(sc, SV_CODEC_CONTROL, reg);
  359 
  360   DPRINTF (("reg: %x\n", sv_read(sc, SV_CODEC_CONTROL)));
  361 
  362   /* Enable DMA interrupts */
  363   reg = sv_read(sc, SV_CODEC_INTMASK);
  364   reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
  365   reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
  366   sv_write(sc, SV_CODEC_INTMASK, reg);
  367 
  368   sv_read(sc, SV_CODEC_STATUS);
  369 
  370   sc->sc_trd = 0;
  371   sc->sc_enable = 0;
  372 
  373   /* Map and establish the interrupt. */
  374   if (pci_intr_map(pa, &ih)) {
  375     printf(": couldn't map interrupt\n");
  376     return;
  377   }
  378   intrstr = pci_intr_string(pc, ih);
  379   sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc,
  380                                  sc->sc_dev.dv_xname);
  381   if (sc->sc_ih == NULL) {
  382     printf(": couldn't establish interrupt");
  383     if (intrstr != NULL)
  384       printf(" at %s", intrstr);
  385     printf("\n");
  386     return;
  387   }
  388   printf(": %s\n", intrstr);
  389 
  390   sv_init_mixer(sc);
  391 
  392   audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
  393 }
  394 
  395 #ifdef AUDIO_DEBUG
  396 void
  397 sv_dumpregs(sc)
  398      struct sv_softc *sc;
  399 {
  400   int idx;
  401 
  402   { int idx;
  403   for (idx = 0; idx < 0x50; idx += 4) {
  404     printf ("%02x = %x\n", idx, pci_conf_read(sc->sc_pci_chipset_tag,
  405             sc->sc_pci_tag, idx));
  406   }
  407   }
  408 
  409   for (idx = 0; idx < 6; idx++) {
  410     printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
  411   }
  412 
  413   for (idx = 0; idx < 0x32; idx++) {
  414     printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
  415   }
  416 
  417   for (idx = 0; idx < 0x10; idx++) {
  418     printf ("DMA %02x = %02x\n", idx, 
  419             bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
  420   }
  421 
  422   return;
  423 }
  424 #endif
  425 
  426 int
  427 sv_intr(p)
  428         void *p;
  429 {
  430   struct sv_softc *sc = p;
  431   u_int8_t intr;
  432 
  433   intr = sv_read(sc, SV_CODEC_STATUS);
  434 
  435   if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 
  436     return (0);
  437 
  438   if (intr & SV_INTSTATUS_DMAA) {
  439     if (sc->sc_pintr)
  440       sc->sc_pintr(sc->sc_parg);
  441   }
  442 
  443   if (intr & SV_INTSTATUS_DMAC) {
  444     if (sc->sc_rintr)
  445       sc->sc_rintr(sc->sc_rarg);
  446   }
  447 
  448   return (1);
  449 }
  450 
  451 int
  452 sv_allocmem(sc, size, align, p)
  453         struct sv_softc *sc;
  454         size_t size;
  455         size_t align;
  456         struct sv_dma *p;
  457 {
  458         int error;
  459 
  460         p->size = size;
  461         error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
  462                                  p->segs, ARRAY_SIZE(p->segs),
  463                                  &p->nsegs, BUS_DMA_NOWAIT);
  464         if (error)
  465                 return (error);
  466 
  467         error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 
  468                                &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
  469         if (error)
  470                 goto free;
  471 
  472         error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
  473                                   0, BUS_DMA_NOWAIT, &p->map);
  474         if (error)
  475                 goto unmap;
  476 
  477         error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 
  478                                 BUS_DMA_NOWAIT);
  479         if (error)
  480                 goto destroy;
  481         return (0);
  482 
  483 destroy:
  484         bus_dmamap_destroy(sc->sc_dmatag, p->map);
  485 unmap:
  486         bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
  487 free:
  488         bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
  489         return (error);
  490 }
  491 
  492 int
  493 sv_freemem(sc, p)
  494         struct sv_softc *sc;
  495         struct sv_dma *p;
  496 {
  497         bus_dmamap_unload(sc->sc_dmatag, p->map);
  498         bus_dmamap_destroy(sc->sc_dmatag, p->map);
  499         bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
  500         bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
  501         return (0);
  502 }
  503 
  504 int
  505 sv_open(addr, flags)
  506         void *addr;
  507         int flags;
  508 {
  509 
  510     struct sv_softc *sc = addr;
  511     int  intr_mask = 0;
  512     u_int8_t reg;
  513 
  514     /* Map the DMA channels, if necessary */
  515     if (!(sc->sc_dma_configured & SV_DMAA_CONFIGURED)) {
  516         /* XXX - there seems to be no general way to find an
  517            I/O range */
  518         int dmaio;
  519         int iosize = 0x10;
  520 
  521         if (sc->sc_dma_configured & SV_DMAA_TRIED_CONFIGURE)
  522             return (ENXIO);
  523 
  524         for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) {
  525             if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 
  526                               &sc->sc_dmaa_ioh)) {
  527                 goto found_dmaa;
  528             }
  529         }
  530 
  531         sc->sc_dma_configured |= SV_DMAA_TRIED_CONFIGURE;
  532         return (ENXIO);
  533     found_dmaa:
  534           
  535         pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag,
  536                        SV_DMAA_CONFIG_OFF, 
  537                        dmaio | SV_DMA_CHANNEL_ENABLE 
  538                        | SV_DMAA_EXTENDED_ADDR);
  539 
  540         sc->sc_dma_configured |= SV_DMAA_CONFIGURED;
  541         intr_mask = 1;
  542     }
  543 
  544     if (!(sc->sc_dma_configured & SV_DMAC_CONFIGURED)) {
  545         /* XXX - there seems to be no general way to find an
  546            I/O range */
  547         int dmaio;
  548         int iosize = 0x10;
  549 
  550         if (sc->sc_dma_configured & SV_DMAC_TRIED_CONFIGURE)
  551             return (ENXIO);
  552 
  553         for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) {
  554             if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 
  555                               &sc->sc_dmac_ioh)) {
  556                 goto found_dmac;
  557             }
  558         }
  559 
  560         sc->sc_dma_configured |= SV_DMAC_TRIED_CONFIGURE;           
  561         return (ENXIO);
  562     found_dmac:
  563           
  564         pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag,
  565                        SV_DMAC_CONFIG_OFF, 
  566                        dmaio | SV_DMA_CHANNEL_ENABLE);
  567 
  568         sc->sc_dma_configured |= SV_DMAC_CONFIGURED;
  569         intr_mask = 1;
  570     }
  571 
  572     /* Make sure DMA interrupts are enabled */
  573     if (intr_mask) {
  574         reg = sv_read(sc, SV_CODEC_INTMASK);
  575         reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
  576         reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
  577         sv_write(sc, SV_CODEC_INTMASK, reg);
  578     }
  579 
  580     sc->sc_pintr = 0;
  581     sc->sc_rintr = 0;
  582 
  583     return (0);
  584 }
  585 
  586 /*
  587  * Close function is called at splaudio().
  588  */
  589 void
  590 sv_close(addr)
  591         void *addr;
  592 {
  593         struct sv_softc *sc = addr;
  594     
  595         sv_halt_in_dma(sc);
  596         sv_halt_out_dma(sc);
  597 
  598         sc->sc_pintr = 0;
  599         sc->sc_rintr = 0;
  600 }
  601 
  602 int
  603 sv_query_encoding(addr, fp)
  604         void *addr;
  605         struct audio_encoding *fp;
  606 {
  607         switch (fp->index) {
  608         case 0:
  609                 strlcpy(fp->name, AudioEulinear, sizeof fp->name);
  610                 fp->encoding = AUDIO_ENCODING_ULINEAR;
  611                 fp->precision = 8;
  612                 fp->flags = 0;
  613                 return (0);
  614         case 1:
  615                 strlcpy(fp->name, AudioEmulaw, sizeof fp->name);
  616                 fp->encoding = AUDIO_ENCODING_ULAW;
  617                 fp->precision = 8;
  618                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  619                 return (0);
  620         case 2:
  621                 strlcpy(fp->name, AudioEalaw, sizeof fp->name);
  622                 fp->encoding = AUDIO_ENCODING_ALAW;
  623                 fp->precision = 8;
  624                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  625                 return (0);
  626         case 3:
  627                 strlcpy(fp->name, AudioEslinear, sizeof fp->name);
  628                 fp->encoding = AUDIO_ENCODING_SLINEAR;
  629                 fp->precision = 8;
  630                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  631                 return (0);
  632         case 4:
  633                 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name);
  634                 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
  635                 fp->precision = 16;
  636                 fp->flags = 0;
  637                 return (0);
  638         case 5:
  639                 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name);
  640                 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
  641                 fp->precision = 16;
  642                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  643                 return (0);
  644         case 6:
  645                 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name);
  646                 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
  647                 fp->precision = 16;
  648                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  649                 return (0);
  650         case 7:
  651                 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name);
  652                 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
  653                 fp->precision = 16;
  654                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  655                 return (0);
  656         default:
  657                 return (EINVAL);
  658         }
  659 }
  660 
  661 int
  662 sv_set_params(addr, setmode, usemode, p, r)
  663         void *addr;
  664         int setmode, usemode;
  665         struct audio_params *p, *r;
  666 {
  667         struct sv_softc *sc = addr;
  668         void (*pswcode)(void *, u_char *buf, int cnt);
  669         void (*rswcode)(void *, u_char *buf, int cnt);
  670         u_int32_t mode, val;
  671         u_int8_t reg;
  672         
  673         pswcode = rswcode = 0;
  674         switch (p->encoding) {
  675         case AUDIO_ENCODING_SLINEAR_BE:
  676                 if (p->precision == 16)
  677                         rswcode = pswcode = swap_bytes;
  678                 else
  679                         pswcode = rswcode = change_sign8;
  680                 break;
  681         case AUDIO_ENCODING_SLINEAR_LE:
  682                 if (p->precision != 16)
  683                         pswcode = rswcode = change_sign8;
  684                 break;
  685         case AUDIO_ENCODING_ULINEAR_BE:
  686                 if (p->precision == 16) {
  687                         pswcode = swap_bytes_change_sign16;
  688                         rswcode = change_sign16_swap_bytes;
  689                 }
  690                 break;
  691         case AUDIO_ENCODING_ULINEAR_LE:
  692                 if (p->precision == 16)
  693                         pswcode = rswcode = change_sign16;
  694                 break;
  695         case AUDIO_ENCODING_ULAW:
  696                 pswcode = mulaw_to_ulinear8;
  697                 rswcode = ulinear8_to_mulaw;
  698                 break;
  699         case AUDIO_ENCODING_ALAW:
  700                 pswcode = alaw_to_ulinear8;
  701                 rswcode = ulinear8_to_alaw;
  702                 break;
  703         default:
  704                 return (EINVAL);
  705         }
  706 
  707         if (p->precision == 16)
  708                 mode = SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16;
  709         else
  710                 mode = 0;
  711         if (p->channels == 2)
  712                 mode |= SV_DMAA_STEREO | SV_DMAC_STEREO;
  713         else if (p->channels != 1)
  714                 return (EINVAL);
  715         if (p->sample_rate < 2000 || p->sample_rate > 48000)
  716                 return (EINVAL);
  717 
  718         p->sw_code = pswcode;
  719         r->sw_code = rswcode;
  720 
  721         /* Set the encoding */
  722         reg = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
  723         reg &= ~(SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16 | SV_DMAA_STEREO |
  724                  SV_DMAC_STEREO);
  725         reg |= (mode);
  726         sv_write_indirect(sc, SV_DMA_DATA_FORMAT, reg);
  727 
  728         val = p->sample_rate * 65536 / 48000;
  729 
  730         sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, (val & 0xff));
  731         sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, (val >> 8));
  732 
  733 #define F_REF 24576000
  734 
  735         if (setmode & AUMODE_RECORD)
  736         {
  737           /* The ADC reference frequency (f_out) is 512 * the sample rate */
  738 
  739           /* f_out is dervied from the 24.576MHZ crystal by three values:
  740              M & N & R. The equation is as follows:
  741 
  742              f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
  743 
  744              with the constraint that:
  745 
  746              80 MhZ < (m + 2) / (n + 2) * f_ref <= 150MHz
  747              and n, m >= 1
  748           */
  749 
  750           int  goal_f_out = 512 * r->sample_rate;
  751           int  a, n, m, best_n, best_m, best_error = 10000000;
  752           int  pll_sample;
  753 
  754           for (a = 0; a < 8; a++) {
  755             if ((goal_f_out * (1 << a)) >= 80000000)
  756               break;
  757           }
  758           
  759           /* a != 8 because sample_rate >= 2000 */
  760 
  761           for (n = 33; n > 2; n--) {
  762             int error;
  763 
  764             m = (goal_f_out * n * (1 << a)) / F_REF;
  765 
  766             if ((m > 257) || (m < 3)) continue;
  767  
  768             pll_sample = (m * F_REF) / (n * (1 << a));
  769             pll_sample /= 512;
  770 
  771             /* Threshold might be good here */
  772             error = pll_sample - r->sample_rate;
  773             error = abs(error);
  774             
  775             if (error < best_error) {
  776               best_error = error;
  777               best_n = n;
  778               best_m = m;
  779               if (error == 0) break;
  780             }
  781           }
  782         
  783 
  784           best_n -= 2;
  785           best_m -= 2;
  786           
  787           sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
  788           sv_write_indirect(sc, SV_ADC_PLL_N, best_n | (a << SV_PLL_R_SHIFT));
  789         }
  790         return (0);
  791 }
  792 
  793 int
  794 sv_round_blocksize(addr, blk)
  795         void *addr;
  796         int blk;
  797 {
  798         return ((blk + 31) & -32);      /* keep good alignment */
  799 }
  800 
  801 int
  802 sv_dma_init_input(addr, buf, cc)
  803         void *addr;
  804         void *buf;
  805         int cc;
  806 {
  807         struct sv_softc *sc = addr;
  808         struct sv_dma *p;
  809         int dma_count;
  810 
  811         DPRINTF(("sv_dma_init_input: dma start loop input addr=%p cc=%d\n", 
  812                  buf, cc));
  813         for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
  814                 ;
  815         if (!p) {
  816                 printf("sv_dma_init_input: bad addr %p\n", buf);
  817                 return (EINVAL);
  818         }
  819 
  820         dma_count = (cc >> 1) - 1;
  821 
  822         bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
  823                           DMAADDR(p));
  824         bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
  825                           dma_count);
  826         bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
  827                           DMA37MD_WRITE | DMA37MD_LOOP);
  828 
  829         return (0);
  830 }
  831 
  832 int
  833 sv_dma_init_output(addr, buf, cc)
  834         void *addr;
  835         void *buf;
  836         int cc;
  837 {
  838         struct sv_softc *sc = addr;
  839         struct sv_dma *p;
  840         int dma_count;
  841 
  842         DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
  843         for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
  844                 ;
  845         if (!p) {
  846                 printf("sv_dma_init_output: bad addr %p\n", buf);
  847                 return (EINVAL);
  848         }
  849 
  850         dma_count = cc - 1;
  851 
  852         bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
  853                           DMAADDR(p));
  854         bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
  855                           dma_count);
  856         bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
  857                           DMA37MD_READ | DMA37MD_LOOP);
  858 
  859         return (0);
  860 }
  861 
  862 int
  863 sv_dma_output(addr, p, cc, intr, arg)
  864         void *addr;
  865         void *p;
  866         int cc;
  867         void (*intr)(void *);
  868         void *arg;
  869 {
  870         struct sv_softc *sc = addr;
  871         u_int8_t mode;
  872 
  873         DPRINTFN(1, 
  874                  ("sv_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", 
  875                   addr, p, cc, intr, arg));
  876 
  877         sc->sc_pintr = intr;
  878         sc->sc_parg = arg;
  879         if (!(sc->sc_enable & SV_PLAY_ENABLE)) {
  880                 int dma_count = cc - 1;
  881 
  882                 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
  883                 sv_write_indirect(sc, SV_DMAA_COUNT0, (dma_count & 0xFF));
  884 
  885                 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  886                 mode |= SV_PLAY_ENABLE;
  887                 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
  888                 sc->sc_enable |= SV_PLAY_ENABLE;
  889         }
  890         return (0);
  891 }
  892 
  893 int
  894 sv_dma_input(addr, p, cc, intr, arg)
  895         void *addr;
  896         void *p;
  897         int cc;
  898         void (*intr)(void *);
  899         void *arg;
  900 {
  901         struct sv_softc *sc = addr;
  902         u_int8_t mode;
  903 
  904         DPRINTFN(1, ("sv_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n", 
  905                      addr, p, cc, intr, arg));
  906         sc->sc_rintr = intr;
  907         sc->sc_rarg = arg;
  908         if (!(sc->sc_enable & SV_RECORD_ENABLE)) {
  909                 int dma_count = (cc >> 1) - 1;
  910 
  911                 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
  912                 sv_write_indirect(sc, SV_DMAC_COUNT0, (dma_count & 0xFF));
  913 
  914                 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  915                 mode |= SV_RECORD_ENABLE;
  916                 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
  917                 sc->sc_enable |= SV_RECORD_ENABLE;
  918         }
  919         return (0);
  920 }
  921 
  922 int
  923 sv_halt_out_dma(addr)
  924         void *addr;
  925 {
  926         struct sv_softc *sc = addr;
  927         u_int8_t mode;
  928         
  929         DPRINTF(("eap: sv_halt_out_dma\n"));
  930         mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  931         mode &= ~SV_PLAY_ENABLE;
  932         sc->sc_enable &= ~SV_PLAY_ENABLE;
  933         sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
  934 
  935         return (0);
  936 }
  937 
  938 int
  939 sv_halt_in_dma(addr)
  940         void *addr;
  941 {
  942         struct sv_softc *sc = addr;
  943         u_int8_t mode;
  944     
  945         DPRINTF(("eap: sv_halt_in_dma\n"));
  946         mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  947         mode &= ~SV_RECORD_ENABLE;
  948         sc->sc_enable &= ~SV_RECORD_ENABLE;
  949         sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
  950 
  951         return (0);
  952 }
  953 
  954 int
  955 sv_getdev(addr, retp)
  956         void *addr;
  957         struct audio_device *retp;
  958 {
  959         *retp = sv_device;
  960         return (0);
  961 }
  962 
  963 
  964 /*
  965  * Mixer related code is here
  966  *
  967  */
  968 
  969 #define SV_INPUT_CLASS 0
  970 #define SV_OUTPUT_CLASS 1
  971 #define SV_RECORD_CLASS 2
  972 
  973 #define SV_LAST_CLASS 2
  974 
  975 static const char *mixer_classes[] = { AudioCinputs, AudioCoutputs, AudioCrecord };
  976 
  977 static const struct {
  978   u_int8_t   l_port;
  979   u_int8_t   r_port;
  980   u_int8_t   mask;
  981   u_int8_t   class;
  982   const char *audio;
  983 } ports[] = {
  984   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
  985     SV_INPUT_CLASS, "aux1" },
  986   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 
  987     SV_INPUT_CLASS, AudioNcd },
  988   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
  989     SV_INPUT_CLASS, AudioNline },
  990   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
  991   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 
  992     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
  993   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
  994     SV_INPUT_CLASS, "aux2" },
  995   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
  996     SV_INPUT_CLASS, AudioNdac },
  997   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 
  998     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
  999 };
 1000 
 1001 
 1002 static const struct {
 1003   int idx;
 1004   const char *name;
 1005 } record_sources[] = {
 1006   { SV_REC_CD, AudioNcd },
 1007   { SV_REC_DAC, AudioNdac },
 1008   { SV_REC_AUX2, "aux2" },
 1009   { SV_REC_LINE, AudioNline },
 1010   { SV_REC_AUX1, "aux1" },
 1011   { SV_REC_MIC, AudioNmicrophone },
 1012   { SV_REC_MIXER, AudioNmixerout }
 1013 };
 1014 
 1015 
 1016 #define SV_DEVICES_PER_PORT 2
 1017 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
 1018 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
 1019 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
 1020 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
 1021 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
 1022 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
 1023 
 1024 int 
 1025 sv_query_devinfo(addr, dip)
 1026         void *addr;
 1027         mixer_devinfo_t *dip;
 1028 {
 1029 
 1030   /* It's a class */
 1031   if (dip->index <= SV_LAST_CLASS) {
 1032     dip->type = AUDIO_MIXER_CLASS;
 1033     dip->mixer_class = dip->index;
 1034     dip->next = dip->prev = AUDIO_MIXER_LAST;
 1035     strlcpy(dip->label.name, mixer_classes[dip->index],
 1036             sizeof dip->label.name);
 1037     return (0);
 1038   }
 1039 
 1040   if (dip->index >= SV_FIRST_MIXER &&
 1041       dip->index <= SV_LAST_MIXER) {
 1042     int off = dip->index - SV_FIRST_MIXER;
 1043     int mute = (off % SV_DEVICES_PER_PORT);
 1044     int idx = off / SV_DEVICES_PER_PORT;
 1045 
 1046     dip->mixer_class = ports[idx].class;
 1047     strlcpy(dip->label.name, ports[idx].audio, sizeof dip->label.name);
 1048 
 1049     if (!mute) {
 1050       dip->type = AUDIO_MIXER_VALUE;
 1051       dip->prev = AUDIO_MIXER_LAST;
 1052       dip->next = dip->index + 1;
 1053 
 1054       if (ports[idx].r_port != 0)
 1055         dip->un.v.num_channels = 2;
 1056       else
 1057         dip->un.v.num_channels = 1;
 1058       
 1059       strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name);
 1060 
 1061     } else {
 1062       dip->type = AUDIO_MIXER_ENUM;
 1063       dip->prev = dip->index - 1;
 1064       dip->next = AUDIO_MIXER_LAST;
 1065 
 1066       strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name);
 1067       dip->un.e.num_mem = 2;
 1068       strlcpy(dip->un.e.member[0].label.name, AudioNoff,
 1069           sizeof dip->un.e.member[0].label.name);
 1070       dip->un.e.member[0].ord = 0;
 1071       strlcpy(dip->un.e.member[1].label.name, AudioNon,
 1072           sizeof dip->un.e.member[1].label.name);
 1073       dip->un.e.member[1].ord = 1;
 1074 
 1075     }
 1076 
 1077     return (0);
 1078   }
 1079 
 1080   switch (dip->index) {
 1081   case SV_RECORD_SOURCE:
 1082     dip->mixer_class = SV_RECORD_CLASS;
 1083     dip->prev = AUDIO_MIXER_LAST;
 1084     dip->next = SV_RECORD_GAIN;
 1085     strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name);
 1086     dip->type = AUDIO_MIXER_ENUM;
 1087 
 1088     dip->un.e.num_mem = ARRAY_SIZE(record_sources);
 1089 
 1090     {
 1091       int idx;
 1092       for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
 1093         strlcpy(dip->un.e.member[idx].label.name, record_sources[idx].name,
 1094             sizeof dip->un.e.member[idx].label.name);
 1095         dip->un.e.member[idx].ord = record_sources[idx].idx;
 1096       }
 1097     }
 1098     return (0);
 1099 
 1100   case SV_RECORD_GAIN:
 1101     dip->mixer_class = SV_RECORD_CLASS;
 1102     dip->prev = SV_RECORD_SOURCE;
 1103     dip->next = AUDIO_MIXER_LAST;
 1104     strlcpy(dip->label.name, "gain", sizeof dip->label.name);
 1105     dip->type = AUDIO_MIXER_VALUE;
 1106     dip->un.v.num_channels = 1;
 1107     strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name);
 1108     return (0);
 1109 
 1110   case SV_MIC_BOOST:
 1111     dip->mixer_class = SV_RECORD_CLASS;
 1112     dip->prev = AUDIO_MIXER_LAST;
 1113     dip->next = AUDIO_MIXER_LAST;
 1114     strlcpy(dip->label.name, "micboost", sizeof dip->label.name);
 1115     goto on_off;
 1116 
 1117   case SV_SRS_MODE:
 1118     dip->mixer_class = SV_OUTPUT_CLASS;
 1119     dip->prev = dip->next = AUDIO_MIXER_LAST;
 1120     strlcpy(dip->label.name, AudioNspatial, sizeof dip->label.name);
 1121 
 1122 on_off:
 1123     dip->type = AUDIO_MIXER_ENUM;
 1124     dip->un.e.num_mem = 2;
 1125     strlcpy(dip->un.e.member[0].label.name, AudioNoff,
 1126         sizeof dip->un.e.member[0].label.name);
 1127     dip->un.e.member[0].ord = 0;
 1128     strlcpy(dip->un.e.member[1].label.name, AudioNon,
 1129         sizeof dip->un.e.member[1].label.name);
 1130     dip->un.e.member[1].ord = 1;
 1131     return (0);
 1132   }
 1133 
 1134   return (ENXIO);
 1135 }
 1136 
 1137 int
 1138 sv_mixer_set_port(addr, cp)
 1139         void *addr;
 1140         mixer_ctrl_t *cp;
 1141 {
 1142   struct sv_softc *sc = addr;
 1143   u_int8_t reg;
 1144   int idx;
 1145 
 1146   if (cp->dev >= SV_FIRST_MIXER &&
 1147       cp->dev <= SV_LAST_MIXER) {
 1148     int off = cp->dev - SV_FIRST_MIXER;
 1149     int mute = (off % SV_DEVICES_PER_PORT);
 1150     idx = off / SV_DEVICES_PER_PORT;
 1151 
 1152     if (mute) {
 1153       if (cp->type != AUDIO_MIXER_ENUM) 
 1154         return (EINVAL);
 1155 
 1156       reg = sv_read_indirect(sc, ports[idx].l_port);
 1157       if (cp->un.ord) 
 1158         reg |= SV_MUTE_BIT;
 1159       else
 1160         reg &= ~SV_MUTE_BIT;
 1161       sv_write_indirect(sc, ports[idx].l_port, reg);
 1162 
 1163       if (ports[idx].r_port) {
 1164         reg = sv_read_indirect(sc, ports[idx].r_port);
 1165         if (cp->un.ord) 
 1166           reg |= SV_MUTE_BIT;
 1167         else
 1168           reg &= ~SV_MUTE_BIT;
 1169         sv_write_indirect(sc, ports[idx].r_port, reg);
 1170       }
 1171     } else {
 1172       int  lval, rval;
 1173 
 1174       if (cp->type != AUDIO_MIXER_VALUE)
 1175         return (EINVAL);
 1176 
 1177       if (cp->un.value.num_channels != 1 &&
 1178           cp->un.value.num_channels != 2)
 1179         return (EINVAL);
 1180 
 1181       if (ports[idx].r_port == 0) {
 1182         if (cp->un.value.num_channels != 1)
 1183           return (EINVAL);
 1184         lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
 1185       } else {
 1186         if (cp->un.value.num_channels != 2)
 1187           return (EINVAL);
 1188 
 1189         lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
 1190         rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
 1191       }
 1192 
 1193       sc->sc_trd = 1;
 1194 
 1195       reg = sv_read_indirect(sc, ports[idx].l_port);
 1196       reg &= ~(ports[idx].mask);
 1197       lval = ((AUDIO_MAX_GAIN - lval) * ports[idx].mask) / AUDIO_MAX_GAIN;
 1198       reg |= lval;
 1199       sv_write_indirect(sc, ports[idx].l_port, reg);
 1200 
 1201       if (ports[idx].r_port != 0) {
 1202         reg = sv_read_indirect(sc, ports[idx].r_port);
 1203         reg &= ~(ports[idx].mask);
 1204 
 1205         rval = ((AUDIO_MAX_GAIN - rval) * ports[idx].mask) / AUDIO_MAX_GAIN;
 1206         reg |= rval;
 1207 
 1208         sv_write_indirect(sc, ports[idx].r_port, reg);
 1209       }
 1210 
 1211       sc->sc_trd = 0;
 1212       sv_read_indirect(sc, ports[idx].l_port);
 1213     }
 1214 
 1215     return (0);
 1216   }
 1217 
 1218 
 1219   switch (cp->dev) {
 1220   case SV_RECORD_SOURCE:
 1221     if (cp->type != AUDIO_MIXER_ENUM)
 1222       return (EINVAL);
 1223 
 1224     for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
 1225       if (record_sources[idx].idx == cp->un.ord)
 1226         goto found;
 1227     }
 1228     
 1229     return (EINVAL);
 1230 
 1231   found:
 1232     reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1233     reg &= ~SV_REC_SOURCE_MASK;
 1234     reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
 1235     sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
 1236 
 1237     reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
 1238     reg &= ~SV_REC_SOURCE_MASK;
 1239     reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
 1240     sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
 1241     return (0);
 1242 
 1243   case SV_RECORD_GAIN:
 1244     {
 1245       int val;
 1246 
 1247       if (cp->type != AUDIO_MIXER_VALUE)
 1248         return (EINVAL);
 1249 
 1250       if (cp->un.value.num_channels != 1)
 1251         return (EINVAL);
 1252 
 1253       val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 
 1254         / AUDIO_MAX_GAIN;
 1255 
 1256       reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1257       reg &= ~SV_REC_GAIN_MASK;
 1258       reg |= val;
 1259       sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
 1260       
 1261       reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
 1262       reg &= ~SV_REC_GAIN_MASK;
 1263       reg |= val;
 1264       sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
 1265 
 1266     }
 1267 
 1268     return (0);
 1269 
 1270   case SV_MIC_BOOST:
 1271     if (cp->type != AUDIO_MIXER_ENUM)
 1272       return (EINVAL);
 1273 
 1274     reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1275     if (cp->un.ord) {
 1276       reg |= SV_MIC_BOOST_BIT;
 1277     } else {
 1278       reg &= ~SV_MIC_BOOST_BIT;
 1279     }
 1280     
 1281     sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
 1282     return (0);
 1283 
 1284   case SV_SRS_MODE:
 1285     if (cp->type != AUDIO_MIXER_ENUM)
 1286       return (EINVAL);
 1287 
 1288     reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
 1289     if (cp->un.ord) {
 1290       reg &= ~SV_SRS_SPACE_ONOFF;
 1291     } else {
 1292       reg |= SV_SRS_SPACE_ONOFF;
 1293     }
 1294     
 1295     sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
 1296     return (0);
 1297   }
 1298 
 1299   return (EINVAL);
 1300 }
 1301 
 1302 int
 1303 sv_mixer_get_port(addr, cp)
 1304         void *addr;
 1305         mixer_ctrl_t *cp;
 1306 {
 1307   struct sv_softc *sc = addr;
 1308   int val;
 1309   u_int8_t reg;
 1310 
 1311   if (cp->dev >= SV_FIRST_MIXER &&
 1312       cp->dev <= SV_LAST_MIXER) {
 1313     int off = cp->dev - SV_FIRST_MIXER;
 1314     int mute = (off % 2);
 1315     int idx = off / 2;
 1316 
 1317     if (mute) {
 1318       if (cp->type != AUDIO_MIXER_ENUM) 
 1319         return (EINVAL);
 1320 
 1321       reg = sv_read_indirect(sc, ports[idx].l_port);
 1322       cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
 1323     } else {
 1324       if (cp->type != AUDIO_MIXER_VALUE)
 1325         return (EINVAL);
 1326 
 1327       if (cp->un.value.num_channels != 1 &&
 1328           cp->un.value.num_channels != 2)
 1329         return (EINVAL);
 1330 
 1331       if ((ports[idx].r_port == 0 &&
 1332            cp->un.value.num_channels != 1) ||
 1333           (ports[idx].r_port != 0 &&
 1334            cp->un.value.num_channels != 2))
 1335         return (EINVAL);
 1336 
 1337       reg = sv_read_indirect(sc, ports[idx].l_port);
 1338       reg &= ports[idx].mask;
 1339 
 1340       val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
 1341 
 1342       if (ports[idx].r_port != 0) {
 1343         cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
 1344 
 1345         reg = sv_read_indirect(sc, ports[idx].r_port);
 1346         reg &= ports[idx].mask;
 1347       
 1348         val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
 1349         cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
 1350       } else 
 1351         cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
 1352     }
 1353 
 1354     return (0);
 1355   }
 1356 
 1357   switch (cp->dev) {
 1358   case SV_RECORD_SOURCE:
 1359     if (cp->type != AUDIO_MIXER_ENUM)
 1360       return (EINVAL);
 1361 
 1362     reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1363     cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
 1364 
 1365     return (0);
 1366 
 1367   case SV_RECORD_GAIN:
 1368     if (cp->type != AUDIO_MIXER_VALUE)
 1369       return (EINVAL);
 1370 
 1371     if (cp->un.value.num_channels != 1)
 1372       return (EINVAL);
 1373 
 1374     reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
 1375     cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 
 1376       (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
 1377 
 1378     return (0);
 1379 
 1380   case SV_MIC_BOOST:
 1381     if (cp->type != AUDIO_MIXER_ENUM)
 1382       return (EINVAL);
 1383 
 1384     reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1385     cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
 1386 
 1387     return (0);
 1388 
 1389 
 1390   case SV_SRS_MODE:
 1391     if (cp->type != AUDIO_MIXER_ENUM)
 1392       return (EINVAL);
 1393 
 1394     reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
 1395 
 1396     cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
 1397     return (0);
 1398   }
 1399 
 1400   return (EINVAL);
 1401 }
 1402 
 1403 
 1404 static void
 1405 sv_init_mixer(sc)
 1406      struct sv_softc *sc;
 1407 {
 1408   mixer_ctrl_t cp;
 1409   int idx;
 1410 
 1411   cp.type = AUDIO_MIXER_ENUM;
 1412   cp.dev = SV_SRS_MODE;
 1413   cp.un.ord = 0;
 1414 
 1415   sv_mixer_set_port(sc, &cp);
 1416 
 1417   for (idx = 0; idx < ARRAY_SIZE(ports); idx++) {
 1418     if (ports[idx].audio == AudioNdac) {
 1419       cp.type = AUDIO_MIXER_ENUM;
 1420       cp.dev = SV_FIRST_MIXER + idx * SV_DEVICES_PER_PORT + 1;
 1421       cp.un.ord = 0;
 1422       sv_mixer_set_port(sc, &cp);
 1423       break;
 1424     }
 1425   }
 1426 }
 1427 
 1428 void *
 1429 sv_malloc(addr, direction, size, pool, flags)
 1430         void *addr;
 1431         int direction;
 1432         size_t size;
 1433         int pool;
 1434         int flags;
 1435 {
 1436         struct sv_softc *sc = addr;
 1437         struct sv_dma *p;
 1438         int error;
 1439 
 1440         p = malloc(sizeof(*p), pool, flags);
 1441         if (!p)
 1442                 return (0);
 1443         error = sv_allocmem(sc, size, 16, p);
 1444         if (error) {
 1445                 free(p, pool);
 1446                 return (0);
 1447         }
 1448         p->next = sc->sc_dmas;
 1449         sc->sc_dmas = p;
 1450         return (KERNADDR(p));
 1451 }
 1452 
 1453 void
 1454 sv_free(addr, ptr, pool)
 1455         void *addr;
 1456         void *ptr;
 1457         int pool;
 1458 {
 1459         struct sv_softc *sc = addr;
 1460         struct sv_dma **p;
 1461 
 1462         for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
 1463                 if (KERNADDR(*p) == ptr) {
 1464                         sv_freemem(sc, *p);
 1465                         *p = (*p)->next;
 1466                         free(*p, pool);
 1467                         return;
 1468                 }
 1469         }
 1470 }
 1471 
 1472 paddr_t
 1473 sv_mappage(addr, mem, off, prot)
 1474         void *addr;
 1475         void *mem;
 1476         off_t off;
 1477         int prot;
 1478 {
 1479         struct sv_softc *sc = addr;
 1480         struct sv_dma *p;
 1481 
 1482         for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
 1483                 ;
 1484         if (!p)
 1485                 return (-1);
 1486         return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 
 1487                                 off, prot, BUS_DMA_WAITOK));
 1488 }
 1489 
 1490 int
 1491 sv_get_props(addr)
 1492         void *addr;
 1493 {
 1494         return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
 1495 }

/* [<][>][^][v][top][bottom][index][help] */