1 /* $OpenBSD: uvm_swap.c,v 1.72 2007/06/18 21:51:15 pedro Exp $ */
2 /* $NetBSD: uvm_swap.c,v 1.40 2000/11/17 11:39:39 mrg Exp $ */
3
4 /*
5 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
32 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
33 */
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/conf.h>
39 #include <sys/proc.h>
40 #include <sys/namei.h>
41 #include <sys/disklabel.h>
42 #include <sys/errno.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/vnode.h>
46 #include <sys/file.h>
47 #include <sys/extent.h>
48 #include <sys/mount.h>
49 #include <sys/pool.h>
50 #include <sys/syscallargs.h>
51 #include <sys/swap.h>
52
53 #include <uvm/uvm.h>
54 #ifdef UVM_SWAP_ENCRYPT
55 #include <sys/syslog.h>
56 #endif
57
58 #include <miscfs/specfs/specdev.h>
59
60 /*
61 * uvm_swap.c: manage configuration and i/o to swap space.
62 */
63
64 /*
65 * swap space is managed in the following way:
66 *
67 * each swap partition or file is described by a "swapdev" structure.
68 * each "swapdev" structure contains a "swapent" structure which contains
69 * information that is passed up to the user (via system calls).
70 *
71 * each swap partition is assigned a "priority" (int) which controls
72 * swap partition usage.
73 *
74 * the system maintains a global data structure describing all swap
75 * partitions/files. there is a sorted LIST of "swappri" structures
76 * which describe "swapdev"'s at that priority. this LIST is headed
77 * by the "swap_priority" global var. each "swappri" contains a
78 * CIRCLEQ of "swapdev" structures at that priority.
79 *
80 * locking:
81 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
82 * system call and prevents the swap priority list from changing
83 * while we are in the middle of a system call (e.g. SWAP_STATS).
84 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
85 * structures including the priority list, the swapdev structures,
86 * and the swapmap extent.
87 *
88 * each swap device has the following info:
89 * - swap device in use (could be disabled, preventing future use)
90 * - swap enabled (allows new allocations on swap)
91 * - map info in /dev/drum
92 * - vnode pointer
93 * for swap files only:
94 * - block size
95 * - max byte count in buffer
96 * - buffer
97 * - credentials to use when doing i/o to file
98 *
99 * userland controls and configures swap with the swapctl(2) system call.
100 * the sys_swapctl performs the following operations:
101 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
102 * [2] SWAP_STATS: given a pointer to an array of swapent structures
103 * (passed in via "arg") of a size passed in via "misc" ... we load
104 * the current swap config into the array.
105 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
106 * priority in "misc", start swapping on it.
107 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
108 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
109 * "misc")
110 */
111
112 /*
113 * swapdev: describes a single swap partition/file
114 *
115 * note the following should be true:
116 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
117 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
118 */
119 struct swapdev {
120 struct swapent swd_se;
121 #define swd_dev swd_se.se_dev /* device id */
122 #define swd_flags swd_se.se_flags /* flags:inuse/enable/fake */
123 #define swd_priority swd_se.se_priority /* our priority */
124 #define swd_inuse swd_se.se_inuse /* our priority */
125 #define swd_nblks swd_se.se_nblks /* our priority */
126 char *swd_path; /* saved pathname of device */
127 int swd_pathlen; /* length of pathname */
128 int swd_npages; /* #pages we can use */
129 int swd_npginuse; /* #pages in use */
130 int swd_npgbad; /* #pages bad */
131 int swd_drumoffset; /* page0 offset in drum */
132 int swd_drumsize; /* #pages in drum */
133 struct extent *swd_ex; /* extent for this swapdev */
134 char swd_exname[12]; /* name of extent above */
135 struct vnode *swd_vp; /* backing vnode */
136 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
137
138 int swd_bsize; /* blocksize (bytes) */
139 int swd_maxactive; /* max active i/o reqs */
140 struct buf swd_tab; /* buffer list */
141 struct ucred *swd_cred; /* cred for file access */
142 #ifdef UVM_SWAP_ENCRYPT
143 #define SWD_KEY_SHIFT 7 /* One key per 0.5 MByte */
144 #define SWD_KEY(x,y) &((x)->swd_keys[((y) - (x)->swd_drumoffset) >> SWD_KEY_SHIFT])
145
146 #define SWD_DCRYPT_SHIFT 5
147 #define SWD_DCRYPT_BITS 32
148 #define SWD_DCRYPT_MASK (SWD_DCRYPT_BITS - 1)
149 #define SWD_DCRYPT_OFF(x) ((x) >> SWD_DCRYPT_SHIFT)
150 #define SWD_DCRYPT_BIT(x) ((x) & SWD_DCRYPT_MASK)
151 #define SWD_DCRYPT_SIZE(x) (SWD_DCRYPT_OFF((x) + SWD_DCRYPT_MASK) * sizeof(u_int32_t))
152 u_int32_t *swd_decrypt; /* bitmap for decryption */
153 struct swap_key *swd_keys; /* keys for different parts */
154 int swd_nkeys; /* active keys */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * The following two structures are used to keep track of data transfers
170 * on swap devices associated with regular files.
171 * NOTE: this code is more or less a copy of vnd.c; we use the same
172 * structure names here to ease porting..
173 */
174 struct vndxfer {
175 struct buf *vx_bp; /* Pointer to parent buffer */
176 struct swapdev *vx_sdp;
177 int vx_error;
178 int vx_pending; /* # of pending aux buffers */
179 int vx_flags;
180 #define VX_BUSY 1
181 #define VX_DEAD 2
182 };
183
184 struct vndbuf {
185 struct buf vb_buf;
186 struct vndxfer *vb_xfer;
187 };
188
189
190 /*
191 * We keep a of pool vndbuf's and vndxfer structures.
192 */
193 struct pool vndxfer_pool;
194 struct pool vndbuf_pool;
195
196 #define getvndxfer(vnx) do { \
197 int s = splbio(); \
198 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
199 splx(s); \
200 } while (0)
201
202 #define putvndxfer(vnx) { \
203 pool_put(&vndxfer_pool, (void *)(vnx)); \
204 }
205
206 #define getvndbuf(vbp) do { \
207 int s = splbio(); \
208 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndbuf(vbp) { \
213 pool_put(&vndbuf_pool, (void *)(vbp)); \
214 }
215
216 /* /dev/drum */
217 bdev_decl(sw);
218 cdev_decl(sw);
219
220 /*
221 * local variables
222 */
223 static struct extent *swapmap; /* controls the mapping of /dev/drum */
224
225 /* list of all active swap devices [by priority] */
226 LIST_HEAD(swap_priority, swappri);
227 static struct swap_priority swap_priority;
228
229 /* locks */
230 struct rwlock swap_syscall_lock = RWLOCK_INITIALIZER("swplk");
231
232 /*
233 * prototypes
234 */
235 static void swapdrum_add(struct swapdev *, int);
236 static struct swapdev *swapdrum_getsdp(int);
237
238 static struct swapdev *swaplist_find(struct vnode *, int);
239 static void swaplist_insert(struct swapdev *,
240 struct swappri *, int);
241 static void swaplist_trim(void);
242
243 static int swap_on(struct proc *, struct swapdev *);
244 static int swap_off(struct proc *, struct swapdev *);
245
246 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
247 static void sw_reg_iodone(struct buf *);
248 static void sw_reg_start(struct swapdev *);
249
250 static int uvm_swap_io(struct vm_page **, int, int, int);
251
252 static void swapmount(void);
253
254 #ifdef UVM_SWAP_ENCRYPT
255 /* for swap encrypt */
256 boolean_t uvm_swap_allocpages(struct vm_page **, int);
257 void uvm_swap_markdecrypt(struct swapdev *, int, int, int);
258 boolean_t uvm_swap_needdecrypt(struct swapdev *, int);
259 void uvm_swap_initcrypt(struct swapdev *, int);
260 #endif
261
262 /*
263 * uvm_swap_init: init the swap system data structures and locks
264 *
265 * => called at boot time from init_main.c after the filesystems
266 * are brought up (which happens after uvm_init())
267 */
268 void
269 uvm_swap_init()
270 {
271 UVMHIST_FUNC("uvm_swap_init");
272
273 UVMHIST_CALLED(pdhist);
274 /*
275 * first, init the swap list, its counter, and its lock.
276 * then get a handle on the vnode for /dev/drum by using
277 * the its dev_t number ("swapdev", from MD conf.c).
278 */
279
280 LIST_INIT(&swap_priority);
281 uvmexp.nswapdev = 0;
282 simple_lock_init(&uvm.swap_data_lock);
283
284 if (!swapdev_vp && bdevvp(swapdev, &swapdev_vp))
285 panic("uvm_swap_init: can't get vnode for swap device");
286
287 /*
288 * create swap block resource map to map /dev/drum. the range
289 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
290 * that block 0 is reserved (used to indicate an allocation
291 * failure, or no allocation).
292 */
293 swapmap = extent_create("swapmap", 1, INT_MAX,
294 M_VMSWAP, 0, 0, EX_NOWAIT);
295 if (swapmap == 0)
296 panic("uvm_swap_init: extent_create failed");
297
298 /*
299 * allocate pools for structures used for swapping to files.
300 */
301
302
303 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
304 NULL);
305
306 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
307 NULL);
308
309 /*
310 * Setup the initial swap partition
311 */
312 swapmount();
313
314 /*
315 * done!
316 */
317 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
318 }
319
320 #ifdef UVM_SWAP_ENCRYPT
321 void
322 uvm_swap_initcrypt_all(void)
323 {
324 struct swapdev *sdp;
325 struct swappri *spp;
326
327 simple_lock(&uvm.swap_data_lock);
328
329 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
330 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)
331 if (sdp->swd_decrypt == NULL)
332 uvm_swap_initcrypt(sdp, sdp->swd_npages);
333 }
334 simple_unlock(&uvm.swap_data_lock);
335 }
336
337 void
338 uvm_swap_initcrypt(struct swapdev *sdp, int npages)
339 {
340 /*
341 * keep information if a page needs to be decrypted when we get it
342 * from the swap device.
343 * We cannot chance a malloc later, if we are doing ASYNC puts,
344 * we may not call malloc with M_WAITOK. This consumes only
345 * 8KB memory for a 256MB swap partition.
346 */
347 sdp->swd_decrypt = malloc(SWD_DCRYPT_SIZE(npages), M_VMSWAP, M_WAITOK);
348 memset(sdp->swd_decrypt, 0, SWD_DCRYPT_SIZE(npages));
349 sdp->swd_keys = malloc((npages >> SWD_KEY_SHIFT) * sizeof(struct swap_key),
350 M_VMSWAP, M_WAITOK);
351 memset(sdp->swd_keys, 0, (npages >> SWD_KEY_SHIFT) * sizeof(struct swap_key));
352 sdp->swd_nkeys = 0;
353 }
354
355 boolean_t
356 uvm_swap_allocpages(struct vm_page **pps, int npages)
357 {
358 int i, s;
359 int minus, reserve;
360 boolean_t fail;
361
362 /* Estimate if we will succeed */
363 s = uvm_lock_fpageq();
364
365 minus = uvmexp.free - npages;
366 reserve = uvmexp.reserve_kernel;
367 fail = uvmexp.free - npages < uvmexp.reserve_kernel;
368
369 uvm_unlock_fpageq(s);
370
371 if (fail)
372 return FALSE;
373
374 /* Get new pages */
375 for (i = 0; i < npages; i++) {
376 pps[i] = uvm_pagealloc(NULL, 0, NULL, 0);
377 if (pps[i] == NULL)
378 break;
379 }
380
381 /* On failure free and return */
382 if (i < npages) {
383 uvm_swap_freepages(pps, i);
384 return FALSE;
385 }
386
387 return TRUE;
388 }
389
390 void
391 uvm_swap_freepages(struct vm_page **pps, int npages)
392 {
393 int i;
394
395 uvm_lock_pageq();
396 for (i = 0; i < npages; i++)
397 uvm_pagefree(pps[i]);
398 uvm_unlock_pageq();
399 }
400
401 /*
402 * Mark pages on the swap device for later decryption
403 */
404
405 void
406 uvm_swap_markdecrypt(struct swapdev *sdp, int startslot, int npages,
407 int decrypt)
408 {
409 int pagestart, i;
410 int off, bit;
411
412 if (!sdp)
413 return;
414
415 pagestart = startslot - sdp->swd_drumoffset;
416 for (i = 0; i < npages; i++, pagestart++) {
417 off = SWD_DCRYPT_OFF(pagestart);
418 bit = SWD_DCRYPT_BIT(pagestart);
419 if (decrypt)
420 /* pages read need decryption */
421 sdp->swd_decrypt[off] |= 1 << bit;
422 else
423 /* pages read do not need decryption */
424 sdp->swd_decrypt[off] &= ~(1 << bit);
425 }
426 }
427
428 /*
429 * Check if the page that we got from disk needs to be decrypted
430 */
431
432 boolean_t
433 uvm_swap_needdecrypt(struct swapdev *sdp, int off)
434 {
435 if (!sdp)
436 return FALSE;
437
438 off -= sdp->swd_drumoffset;
439 return sdp->swd_decrypt[SWD_DCRYPT_OFF(off)] & (1 << SWD_DCRYPT_BIT(off)) ?
440 TRUE : FALSE;
441 }
442 #endif /* UVM_SWAP_ENCRYPT */
443 /*
444 * swaplist functions: functions that operate on the list of swap
445 * devices on the system.
446 */
447
448 /*
449 * swaplist_insert: insert swap device "sdp" into the global list
450 *
451 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
452 * => caller must provide a newly malloc'd swappri structure (we will
453 * FREE it if we don't need it... this it to prevent malloc blocking
454 * here while adding swap)
455 */
456 static void
457 swaplist_insert(sdp, newspp, priority)
458 struct swapdev *sdp;
459 struct swappri *newspp;
460 int priority;
461 {
462 struct swappri *spp, *pspp;
463 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
464
465 /*
466 * find entry at or after which to insert the new device.
467 */
468 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
469 spp = LIST_NEXT(spp, spi_swappri)) {
470 if (priority <= spp->spi_priority)
471 break;
472 pspp = spp;
473 }
474
475 /*
476 * new priority?
477 */
478 if (spp == NULL || spp->spi_priority != priority) {
479 spp = newspp; /* use newspp! */
480 UVMHIST_LOG(pdhist, "created new swappri = %ld",
481 priority, 0, 0, 0);
482
483 spp->spi_priority = priority;
484 CIRCLEQ_INIT(&spp->spi_swapdev);
485
486 if (pspp)
487 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
488 else
489 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
490 } else {
491 /* we don't need a new priority structure, free it */
492 FREE(newspp, M_VMSWAP);
493 }
494
495 /*
496 * priority found (or created). now insert on the priority's
497 * circleq list and bump the total number of swapdevs.
498 */
499 sdp->swd_priority = priority;
500 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
501 uvmexp.nswapdev++;
502 }
503
504 /*
505 * swaplist_find: find and optionally remove a swap device from the
506 * global list.
507 *
508 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
509 * => we return the swapdev we found (and removed)
510 */
511 static struct swapdev *
512 swaplist_find(vp, remove)
513 struct vnode *vp;
514 boolean_t remove;
515 {
516 struct swapdev *sdp;
517 struct swappri *spp;
518
519 /*
520 * search the lists for the requested vp
521 */
522 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
523 spp = LIST_NEXT(spp, spi_swappri)) {
524 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
525 sdp != (void *)&spp->spi_swapdev;
526 sdp = CIRCLEQ_NEXT(sdp, swd_next))
527 if (sdp->swd_vp == vp) {
528 if (remove) {
529 CIRCLEQ_REMOVE(&spp->spi_swapdev,
530 sdp, swd_next);
531 uvmexp.nswapdev--;
532 }
533 return(sdp);
534 }
535 }
536 return (NULL);
537 }
538
539
540 /*
541 * swaplist_trim: scan priority list for empty priority entries and kill
542 * them.
543 *
544 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
545 */
546 static void
547 swaplist_trim()
548 {
549 struct swappri *spp, *nextspp;
550
551 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
552 nextspp = LIST_NEXT(spp, spi_swappri);
553 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
554 (void *)&spp->spi_swapdev)
555 continue;
556 LIST_REMOVE(spp, spi_swappri);
557 free(spp, M_VMSWAP);
558 }
559 }
560
561 /*
562 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
563 *
564 * => caller must hold swap_syscall_lock
565 * => uvm.swap_data_lock should be unlocked (we may sleep)
566 */
567 static void
568 swapdrum_add(sdp, npages)
569 struct swapdev *sdp;
570 int npages;
571 {
572 u_long result;
573
574 if (extent_alloc(swapmap, npages, EX_NOALIGN, 0, EX_NOBOUNDARY,
575 EX_WAITOK, &result))
576 panic("swapdrum_add");
577
578 sdp->swd_drumoffset = result;
579 sdp->swd_drumsize = npages;
580 }
581
582 /*
583 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
584 * to the "swapdev" that maps that section of the drum.
585 *
586 * => each swapdev takes one big contig chunk of the drum
587 * => caller must hold uvm.swap_data_lock
588 */
589 static struct swapdev *
590 swapdrum_getsdp(pgno)
591 int pgno;
592 {
593 struct swapdev *sdp;
594 struct swappri *spp;
595
596 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
597 spp = LIST_NEXT(spp, spi_swappri))
598 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
599 sdp != (void *)&spp->spi_swapdev;
600 sdp = CIRCLEQ_NEXT(sdp, swd_next))
601 if (pgno >= sdp->swd_drumoffset &&
602 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
603 return sdp;
604 }
605 return NULL;
606 }
607
608
609 /*
610 * sys_swapctl: main entry point for swapctl(2) system call
611 * [with two helper functions: swap_on and swap_off]
612 */
613 int
614 sys_swapctl(p, v, retval)
615 struct proc *p;
616 void *v;
617 register_t *retval;
618 {
619 struct sys_swapctl_args /* {
620 syscallarg(int) cmd;
621 syscallarg(void *) arg;
622 syscallarg(int) misc;
623 } */ *uap = (struct sys_swapctl_args *)v;
624 struct vnode *vp;
625 struct nameidata nd;
626 struct swappri *spp;
627 struct swapdev *sdp;
628 struct swapent *sep;
629 char userpath[MAXPATHLEN];
630 size_t len;
631 int count, error, misc;
632 int priority;
633 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
634
635 misc = SCARG(uap, misc);
636
637 /*
638 * ensure serialized syscall access by grabbing the swap_syscall_lock
639 */
640 rw_enter_write(&swap_syscall_lock);
641
642 /*
643 * we handle the non-priv NSWAP and STATS request first.
644 *
645 * SWAP_NSWAP: return number of config'd swap devices
646 * [can also be obtained with uvmexp sysctl]
647 */
648 if (SCARG(uap, cmd) == SWAP_NSWAP) {
649 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%ld", uvmexp.nswapdev,
650 0, 0, 0);
651 *retval = uvmexp.nswapdev;
652 error = 0;
653 goto out;
654 }
655
656 /*
657 * SWAP_STATS: get stats on current # of configured swap devs
658 *
659 * note that the swap_priority list can't change as long
660 * as we are holding the swap_syscall_lock. we don't want
661 * to grab the uvm.swap_data_lock because we may fault&sleep during
662 * copyout() and we don't want to be holding that lock then!
663 */
664 if (SCARG(uap, cmd) == SWAP_STATS
665 #if defined(COMPAT_13)
666 || SCARG(uap, cmd) == SWAP_OSTATS
667 #endif
668 ) {
669 sep = (struct swapent *)SCARG(uap, arg);
670 count = 0;
671
672 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
673 spp = LIST_NEXT(spp, spi_swappri)) {
674 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
675 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
676 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
677 sdp->swd_inuse =
678 btodb((u_int64_t)sdp->swd_npginuse <<
679 PAGE_SHIFT);
680 error = copyout(&sdp->swd_se, sep,
681 sizeof(struct swapent));
682
683 /* now copy out the path if necessary */
684 #if defined(COMPAT_13)
685 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
686 #else
687 if (error == 0)
688 #endif
689 error = copyout(sdp->swd_path,
690 &sep->se_path, sdp->swd_pathlen);
691
692 if (error)
693 goto out;
694 count++;
695 #if defined(COMPAT_13)
696 if (SCARG(uap, cmd) == SWAP_OSTATS)
697 ((struct oswapent *)sep)++;
698 else
699 #endif
700 sep++;
701 }
702 }
703
704 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
705
706 *retval = count;
707 error = 0;
708 goto out;
709 }
710
711 /*
712 * all other requests require superuser privs. verify.
713 */
714 if ((error = suser(p, 0)))
715 goto out;
716
717 /*
718 * at this point we expect a path name in arg. we will
719 * use namei() to gain a vnode reference (vref), and lock
720 * the vnode (VOP_LOCK).
721 *
722 * XXX: a NULL arg means use the root vnode pointer (e.g. for
723 * miniroot)
724 */
725 if (SCARG(uap, arg) == NULL) {
726 vp = rootvp; /* miniroot */
727 if (vget(vp, LK_EXCLUSIVE, p)) {
728 error = EBUSY;
729 goto out;
730 }
731 if (SCARG(uap, cmd) == SWAP_ON &&
732 copystr("miniroot", userpath, sizeof userpath, &len))
733 panic("swapctl: miniroot copy failed");
734 } else {
735 int space;
736 char *where;
737
738 if (SCARG(uap, cmd) == SWAP_ON) {
739 if ((error = copyinstr(SCARG(uap, arg), userpath,
740 sizeof userpath, &len)))
741 goto out;
742 space = UIO_SYSSPACE;
743 where = userpath;
744 } else {
745 space = UIO_USERSPACE;
746 where = (char *)SCARG(uap, arg);
747 }
748 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
749 if ((error = namei(&nd)))
750 goto out;
751 vp = nd.ni_vp;
752 }
753 /* note: "vp" is referenced and locked */
754
755 error = 0; /* assume no error */
756 switch(SCARG(uap, cmd)) {
757
758 case SWAP_DUMPDEV:
759 if (vp->v_type != VBLK) {
760 error = ENOTBLK;
761 break;
762 }
763 dumpdev = vp->v_rdev;
764 break;
765
766 case SWAP_CTL:
767 /*
768 * get new priority, remove old entry (if any) and then
769 * reinsert it in the correct place. finally, prune out
770 * any empty priority structures.
771 */
772 priority = SCARG(uap, misc);
773 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
774 simple_lock(&uvm.swap_data_lock);
775 if ((sdp = swaplist_find(vp, 1)) == NULL) {
776 error = ENOENT;
777 } else {
778 swaplist_insert(sdp, spp, priority);
779 swaplist_trim();
780 }
781 simple_unlock(&uvm.swap_data_lock);
782 if (error)
783 free(spp, M_VMSWAP);
784 break;
785
786 case SWAP_ON:
787
788 /*
789 * check for duplicates. if none found, then insert a
790 * dummy entry on the list to prevent someone else from
791 * trying to enable this device while we are working on
792 * it.
793 */
794
795 priority = SCARG(uap, misc);
796 simple_lock(&uvm.swap_data_lock);
797 if ((sdp = swaplist_find(vp, 0)) != NULL) {
798 error = EBUSY;
799 simple_unlock(&uvm.swap_data_lock);
800 break;
801 }
802 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
803 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
804 memset(sdp, 0, sizeof(*sdp));
805 sdp->swd_flags = SWF_FAKE; /* placeholder only */
806 sdp->swd_vp = vp;
807 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
808
809 /*
810 * XXX Is NFS elaboration necessary?
811 */
812 if (vp->v_type == VREG) {
813 sdp->swd_cred = crdup(p->p_ucred);
814 }
815
816 swaplist_insert(sdp, spp, priority);
817 simple_unlock(&uvm.swap_data_lock);
818
819 sdp->swd_pathlen = len;
820 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
821 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
822 panic("swapctl: copystr");
823
824 /*
825 * we've now got a FAKE placeholder in the swap list.
826 * now attempt to enable swap on it. if we fail, undo
827 * what we've done and kill the fake entry we just inserted.
828 * if swap_on is a success, it will clear the SWF_FAKE flag
829 */
830
831 if ((error = swap_on(p, sdp)) != 0) {
832 simple_lock(&uvm.swap_data_lock);
833 (void) swaplist_find(vp, 1); /* kill fake entry */
834 swaplist_trim();
835 simple_unlock(&uvm.swap_data_lock);
836 if (vp->v_type == VREG) {
837 crfree(sdp->swd_cred);
838 }
839 free(sdp->swd_path, M_VMSWAP);
840 free(sdp, M_VMSWAP);
841 break;
842 }
843 break;
844
845 case SWAP_OFF:
846 simple_lock(&uvm.swap_data_lock);
847 if ((sdp = swaplist_find(vp, 0)) == NULL) {
848 simple_unlock(&uvm.swap_data_lock);
849 error = ENXIO;
850 break;
851 }
852
853 /*
854 * If a device isn't in use or enabled, we
855 * can't stop swapping from it (again).
856 */
857 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
858 simple_unlock(&uvm.swap_data_lock);
859 error = EBUSY;
860 break;
861 }
862
863 /*
864 * do the real work.
865 */
866 error = swap_off(p, sdp);
867 break;
868
869 default:
870 error = EINVAL;
871 }
872
873 /*
874 * done! release the ref gained by namei() and unlock.
875 */
876 vput(vp);
877
878 out:
879 rw_exit_write(&swap_syscall_lock);
880
881 UVMHIST_LOG(pdhist, "<- done! error=%ld", error, 0, 0, 0);
882 return (error);
883 }
884
885 /*
886 * swap_on: attempt to enable a swapdev for swapping. note that the
887 * swapdev is already on the global list, but disabled (marked
888 * SWF_FAKE).
889 *
890 * => we avoid the start of the disk (to protect disk labels)
891 * => we also avoid the miniroot, if we are swapping to root.
892 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
893 * if needed.
894 */
895 static int
896 swap_on(p, sdp)
897 struct proc *p;
898 struct swapdev *sdp;
899 {
900 static int count = 0; /* static */
901 struct vnode *vp;
902 int error, npages, nblocks, size;
903 long addr;
904 struct vattr va;
905 #if defined(NFSCLIENT)
906 extern int (**nfsv2_vnodeop_p)(void *);
907 #endif /* defined(NFSCLIENT) */
908 dev_t dev;
909 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
910
911 /*
912 * we want to enable swapping on sdp. the swd_vp contains
913 * the vnode we want (locked and ref'd), and the swd_dev
914 * contains the dev_t of the file, if it a block device.
915 */
916
917 vp = sdp->swd_vp;
918 dev = sdp->swd_dev;
919
920 /*
921 * open the swap file (mostly useful for block device files to
922 * let device driver know what is up).
923 *
924 * we skip the open/close for root on swap because the root
925 * has already been opened when root was mounted (mountroot).
926 */
927 if (vp != rootvp) {
928 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
929 return (error);
930 }
931
932 /* XXX this only works for block devices */
933 UVMHIST_LOG(pdhist, " dev=%ld, major(dev)=%ld", dev, major(dev), 0,0);
934
935 /*
936 * we now need to determine the size of the swap area. for
937 * block specials we can call the d_psize function.
938 * for normal files, we must stat [get attrs].
939 *
940 * we put the result in nblks.
941 * for normal files, we also want the filesystem block size
942 * (which we get with statfs).
943 */
944 switch (vp->v_type) {
945 case VBLK:
946 if (bdevsw[major(dev)].d_psize == 0 ||
947 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
948 error = ENXIO;
949 goto bad;
950 }
951 break;
952
953 case VREG:
954 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
955 goto bad;
956 nblocks = (int)btodb(va.va_size);
957 if ((error =
958 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
959 goto bad;
960
961 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
962 /*
963 * limit the max # of outstanding I/O requests we issue
964 * at any one time. take it easy on NFS servers.
965 */
966 #if defined(NFSCLIENT)
967 if (vp->v_op == nfsv2_vnodeop_p)
968 sdp->swd_maxactive = 2; /* XXX */
969 else
970 #endif /* defined(NFSCLIENT) */
971 sdp->swd_maxactive = 8; /* XXX */
972 break;
973
974 default:
975 error = ENXIO;
976 goto bad;
977 }
978
979 /*
980 * save nblocks in a safe place and convert to pages.
981 */
982
983 sdp->swd_nblks = nblocks;
984 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
985
986 /*
987 * for block special files, we want to make sure that leave
988 * the disklabel and bootblocks alone, so we arrange to skip
989 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
990 * note that because of this the "size" can be less than the
991 * actual number of blocks on the device.
992 */
993 if (vp->v_type == VBLK) {
994 /* we use pages 1 to (size - 1) [inclusive] */
995 size = npages - 1;
996 addr = 1;
997 } else {
998 /* we use pages 0 to (size - 1) [inclusive] */
999 size = npages;
1000 addr = 0;
1001 }
1002
1003 /*
1004 * make sure we have enough blocks for a reasonable sized swap
1005 * area. we want at least one page.
1006 */
1007
1008 if (size < 1) {
1009 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
1010 error = EINVAL;
1011 goto bad;
1012 }
1013
1014 UVMHIST_LOG(pdhist, " dev=%lx: size=%ld addr=0x%lx\n",
1015 dev, size, addr, 0);
1016
1017 /*
1018 * now we need to allocate an extent to manage this swap device
1019 */
1020 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
1021 count++);
1022
1023 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
1024 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
1025 0, 0, EX_WAITOK);
1026 /* allocate the `saved' region from the extent so it won't be used */
1027 if (addr) {
1028 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
1029 panic("disklabel region");
1030 }
1031
1032 /*
1033 * if the vnode we are swapping to is the root vnode
1034 * (i.e. we are swapping to the miniroot) then we want
1035 * to make sure we don't overwrite it. do a statfs to
1036 * find its size and skip over it.
1037 */
1038 if (vp == rootvp) {
1039 struct mount *mp;
1040 struct statfs *sp;
1041 int rootblocks, rootpages;
1042
1043 mp = rootvnode->v_mount;
1044 sp = &mp->mnt_stat;
1045 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
1046 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
1047 if (rootpages > size)
1048 panic("swap_on: miniroot larger than swap?");
1049
1050 if (extent_alloc_region(sdp->swd_ex, addr,
1051 rootpages, EX_WAITOK))
1052 panic("swap_on: unable to preserve miniroot");
1053
1054 size -= rootpages;
1055 printf("Preserved %d pages of miniroot ", rootpages);
1056 printf("leaving %d pages of swap\n", size);
1057 }
1058
1059 /*
1060 * add a ref to vp to reflect usage as a swap device.
1061 */
1062 vref(vp);
1063
1064 #ifdef UVM_SWAP_ENCRYPT
1065 if (uvm_doswapencrypt)
1066 uvm_swap_initcrypt(sdp, npages);
1067 #endif
1068 /*
1069 * now add the new swapdev to the drum and enable.
1070 */
1071 simple_lock(&uvm.swap_data_lock);
1072 swapdrum_add(sdp, npages);
1073 sdp->swd_npages = size;
1074 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1075 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1076 uvmexp.swpages += size;
1077 simple_unlock(&uvm.swap_data_lock);
1078 return (0);
1079
1080 bad:
1081 /*
1082 * failure: close device if necessary and return error.
1083 */
1084 if (vp != rootvp)
1085 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1086 return (error);
1087 }
1088
1089 /*
1090 * swap_off: stop swapping on swapdev
1091 *
1092 * => swap data should be locked, we will unlock.
1093 */
1094 static int
1095 swap_off(p, sdp)
1096 struct proc *p;
1097 struct swapdev *sdp;
1098 {
1099 int error;
1100 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1101 UVMHIST_LOG(pdhist, " dev=%lx", sdp->swd_dev,0,0,0);
1102
1103 /* disable the swap area being removed */
1104 sdp->swd_flags &= ~SWF_ENABLE;
1105 simple_unlock(&uvm.swap_data_lock);
1106
1107 /*
1108 * the idea is to find all the pages that are paged out to this
1109 * device, and page them all in. in uvm, swap-backed pageable
1110 * memory can take two forms: aobjs and anons. call the
1111 * swapoff hook for each subsystem to bring in pages.
1112 */
1113
1114 if (uao_swap_off(sdp->swd_drumoffset,
1115 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1116 amap_swap_off(sdp->swd_drumoffset,
1117 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1118
1119 error = ENOMEM;
1120 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1121 error = EBUSY;
1122 }
1123
1124 if (error) {
1125 simple_lock(&uvm.swap_data_lock);
1126 sdp->swd_flags |= SWF_ENABLE;
1127 simple_unlock(&uvm.swap_data_lock);
1128 return (error);
1129 }
1130
1131 /*
1132 * done with the vnode and saved creds.
1133 * drop our ref on the vnode before calling VOP_CLOSE()
1134 * so that spec_close() can tell if this is the last close.
1135 */
1136 if (sdp->swd_vp->v_type == VREG) {
1137 crfree(sdp->swd_cred);
1138 }
1139 vrele(sdp->swd_vp);
1140 if (sdp->swd_vp != rootvp) {
1141 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1142 }
1143
1144 simple_lock(&uvm.swap_data_lock);
1145 uvmexp.swpages -= sdp->swd_npages;
1146
1147 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1148 panic("swap_off: swapdev not in list");
1149 swaplist_trim();
1150
1151 /*
1152 * free all resources!
1153 */
1154 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1155 EX_WAITOK);
1156 extent_destroy(sdp->swd_ex);
1157 free(sdp, M_VMSWAP);
1158 simple_unlock(&uvm.swap_data_lock);
1159 return (0);
1160 }
1161
1162 /*
1163 * /dev/drum interface and i/o functions
1164 */
1165
1166 /*
1167 * swread: the read function for the drum (just a call to physio)
1168 */
1169 /*ARGSUSED*/
1170 int
1171 swread(dev, uio, ioflag)
1172 dev_t dev;
1173 struct uio *uio;
1174 int ioflag;
1175 {
1176 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1177
1178 UVMHIST_LOG(pdhist, " dev=%lx offset=%lx",
1179 dev, (u_long)uio->uio_offset, 0, 0);
1180 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1181 }
1182
1183 /*
1184 * swwrite: the write function for the drum (just a call to physio)
1185 */
1186 /*ARGSUSED*/
1187 int
1188 swwrite(dev, uio, ioflag)
1189 dev_t dev;
1190 struct uio *uio;
1191 int ioflag;
1192 {
1193 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1194
1195 UVMHIST_LOG(pdhist, " dev=%lx offset=%lx",
1196 dev, (u_long)uio->uio_offset, 0, 0);
1197 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1198 }
1199
1200 /*
1201 * swstrategy: perform I/O on the drum
1202 *
1203 * => we must map the i/o request from the drum to the correct swapdev.
1204 */
1205 void
1206 swstrategy(bp)
1207 struct buf *bp;
1208 {
1209 struct swapdev *sdp;
1210 int s, pageno, bn;
1211 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1212
1213 /*
1214 * convert block number to swapdev. note that swapdev can't
1215 * be yanked out from under us because we are holding resources
1216 * in it (i.e. the blocks we are doing I/O on).
1217 */
1218 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1219 simple_lock(&uvm.swap_data_lock);
1220 sdp = swapdrum_getsdp(pageno);
1221 simple_unlock(&uvm.swap_data_lock);
1222 if (sdp == NULL) {
1223 bp->b_error = EINVAL;
1224 bp->b_flags |= B_ERROR;
1225 s = splbio();
1226 biodone(bp);
1227 splx(s);
1228 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1229 return;
1230 }
1231
1232 /*
1233 * convert drum page number to block number on this swapdev.
1234 */
1235
1236 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1237 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1238
1239 UVMHIST_LOG(pdhist, " %s: mapoff=%lx bn=0x%lx bcount=%ld",
1240 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1241 sdp->swd_drumoffset, bn, bp->b_bcount);
1242
1243 /*
1244 * for block devices we finish up here.
1245 * for regular files we have to do more work which we delegate
1246 * to sw_reg_strategy().
1247 */
1248
1249 switch (sdp->swd_vp->v_type) {
1250 default:
1251 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1252
1253 case VBLK:
1254
1255 /*
1256 * must convert "bp" from an I/O on /dev/drum to an I/O
1257 * on the swapdev (sdp).
1258 */
1259 s = splbio();
1260 buf_replacevnode(bp, sdp->swd_vp);
1261
1262 bp->b_blkno = bn;
1263 splx(s);
1264 VOP_STRATEGY(bp);
1265 return;
1266
1267 case VREG:
1268 /*
1269 * delegate to sw_reg_strategy function.
1270 */
1271 sw_reg_strategy(sdp, bp, bn);
1272 return;
1273 }
1274 /* NOTREACHED */
1275 }
1276
1277 /*
1278 * sw_reg_strategy: handle swap i/o to regular files
1279 */
1280 static void
1281 sw_reg_strategy(sdp, bp, bn)
1282 struct swapdev *sdp;
1283 struct buf *bp;
1284 int bn;
1285 {
1286 struct vnode *vp;
1287 struct vndxfer *vnx;
1288 daddr64_t nbn;
1289 caddr_t addr;
1290 off_t byteoff;
1291 int s, off, nra, error, sz, resid;
1292 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1293
1294 /*
1295 * allocate a vndxfer head for this transfer and point it to
1296 * our buffer.
1297 */
1298 getvndxfer(vnx);
1299 vnx->vx_flags = VX_BUSY;
1300 vnx->vx_error = 0;
1301 vnx->vx_pending = 0;
1302 vnx->vx_bp = bp;
1303 vnx->vx_sdp = sdp;
1304
1305 /*
1306 * setup for main loop where we read filesystem blocks into
1307 * our buffer.
1308 */
1309 error = 0;
1310 bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1311 addr = bp->b_data; /* current position in buffer */
1312 byteoff = dbtob((u_int64_t)bn);
1313
1314 for (resid = bp->b_resid; resid; resid -= sz) {
1315 struct vndbuf *nbp;
1316
1317 /*
1318 * translate byteoffset into block number. return values:
1319 * vp = vnode of underlying device
1320 * nbn = new block number (on underlying vnode dev)
1321 * nra = num blocks we can read-ahead (excludes requested
1322 * block)
1323 */
1324 nra = 0;
1325 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1326 &vp, &nbn, &nra);
1327
1328 if (error == 0 && nbn == (daddr64_t)-1) {
1329 /*
1330 * this used to just set error, but that doesn't
1331 * do the right thing. Instead, it causes random
1332 * memory errors. The panic() should remain until
1333 * this condition doesn't destabilize the system.
1334 */
1335 #if 1
1336 panic("sw_reg_strategy: swap to sparse file");
1337 #else
1338 error = EIO; /* failure */
1339 #endif
1340 }
1341
1342 /*
1343 * punt if there was an error or a hole in the file.
1344 * we must wait for any i/o ops we have already started
1345 * to finish before returning.
1346 *
1347 * XXX we could deal with holes here but it would be
1348 * a hassle (in the write case).
1349 */
1350 if (error) {
1351 s = splbio();
1352 vnx->vx_error = error; /* pass error up */
1353 goto out;
1354 }
1355
1356 /*
1357 * compute the size ("sz") of this transfer (in bytes).
1358 */
1359 off = byteoff % sdp->swd_bsize;
1360 sz = (1 + nra) * sdp->swd_bsize - off;
1361 if (sz > resid)
1362 sz = resid;
1363
1364 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1365 "vp %p/%p offset 0x%lx/0x%llx",
1366 sdp->swd_vp, vp, (u_long)byteoff, nbn);
1367
1368 /*
1369 * now get a buf structure. note that the vb_buf is
1370 * at the front of the nbp structure so that you can
1371 * cast pointers between the two structure easily.
1372 */
1373 getvndbuf(nbp);
1374 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1375 nbp->vb_buf.b_bcount = sz;
1376 nbp->vb_buf.b_bufsize = sz;
1377 nbp->vb_buf.b_error = 0;
1378 nbp->vb_buf.b_data = addr;
1379 nbp->vb_buf.b_blkno = nbn + btodb(off);
1380 nbp->vb_buf.b_proc = bp->b_proc;
1381 nbp->vb_buf.b_iodone = sw_reg_iodone;
1382 nbp->vb_buf.b_vp = NULLVP;
1383 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1384 LIST_INIT(&nbp->vb_buf.b_dep);
1385
1386 /*
1387 * set b_dirtyoff/end and b_validoff/end. this is
1388 * required by the NFS client code (otherwise it will
1389 * just discard our I/O request).
1390 */
1391 if (bp->b_dirtyend == 0) {
1392 nbp->vb_buf.b_dirtyoff = 0;
1393 nbp->vb_buf.b_dirtyend = sz;
1394 } else {
1395 nbp->vb_buf.b_dirtyoff =
1396 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1397 nbp->vb_buf.b_dirtyend =
1398 min(sz,
1399 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1400 }
1401 if (bp->b_validend == 0) {
1402 nbp->vb_buf.b_validoff = 0;
1403 nbp->vb_buf.b_validend = sz;
1404 } else {
1405 nbp->vb_buf.b_validoff =
1406 max(0, bp->b_validoff - (bp->b_bcount-resid));
1407 nbp->vb_buf.b_validend =
1408 min(sz,
1409 max(0, bp->b_validend - (bp->b_bcount-resid)));
1410 }
1411
1412 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1413
1414 /*
1415 * Just sort by block number
1416 */
1417 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1418 s = splbio();
1419 if (vnx->vx_error != 0) {
1420 putvndbuf(nbp);
1421 goto out;
1422 }
1423 vnx->vx_pending++;
1424
1425 /* assoc new buffer with underlying vnode */
1426 bgetvp(vp, &nbp->vb_buf);
1427
1428 /* sort it in and start I/O if we are not over our limit */
1429 disksort(&sdp->swd_tab, &nbp->vb_buf);
1430 sw_reg_start(sdp);
1431 splx(s);
1432
1433 /*
1434 * advance to the next I/O
1435 */
1436 byteoff += sz;
1437 addr += sz;
1438 }
1439
1440 s = splbio();
1441
1442 out: /* Arrive here at splbio */
1443 vnx->vx_flags &= ~VX_BUSY;
1444 if (vnx->vx_pending == 0) {
1445 if (vnx->vx_error != 0) {
1446 bp->b_error = vnx->vx_error;
1447 bp->b_flags |= B_ERROR;
1448 }
1449 putvndxfer(vnx);
1450 biodone(bp);
1451 }
1452 splx(s);
1453 }
1454
1455 /*
1456 * sw_reg_start: start an I/O request on the requested swapdev
1457 *
1458 * => reqs are sorted by disksort (above)
1459 */
1460 static void
1461 sw_reg_start(sdp)
1462 struct swapdev *sdp;
1463 {
1464 struct buf *bp;
1465 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1466
1467 /* recursion control */
1468 if ((sdp->swd_flags & SWF_BUSY) != 0)
1469 return;
1470
1471 sdp->swd_flags |= SWF_BUSY;
1472
1473 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1474 bp = sdp->swd_tab.b_actf;
1475 if (bp == NULL)
1476 break;
1477 sdp->swd_tab.b_actf = bp->b_actf;
1478 sdp->swd_tab.b_active++;
1479
1480 UVMHIST_LOG(pdhist,
1481 "sw_reg_start: bp %p vp %p blkno 0x%lx cnt 0x%lx",
1482 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1483 if ((bp->b_flags & B_READ) == 0)
1484 bp->b_vp->v_numoutput++;
1485
1486 VOP_STRATEGY(bp);
1487 }
1488 sdp->swd_flags &= ~SWF_BUSY;
1489 }
1490
1491 /*
1492 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1493 *
1494 * => note that we can recover the vndbuf struct by casting the buf ptr
1495 */
1496 static void
1497 sw_reg_iodone(bp)
1498 struct buf *bp;
1499 {
1500 struct vndbuf *vbp = (struct vndbuf *) bp;
1501 struct vndxfer *vnx = vbp->vb_xfer;
1502 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1503 struct swapdev *sdp = vnx->vx_sdp;
1504 int resid;
1505 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1506
1507 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=0x%lx addr=%p",
1508 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1509 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1510 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1511
1512 splassert(IPL_BIO);
1513
1514 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1515 pbp->b_resid -= resid;
1516 vnx->vx_pending--;
1517
1518 if (vbp->vb_buf.b_error) {
1519 UVMHIST_LOG(pdhist, " got error=%ld !",
1520 vbp->vb_buf.b_error, 0, 0, 0);
1521
1522 /* pass error upward */
1523 vnx->vx_error = vbp->vb_buf.b_error;
1524 }
1525
1526 /*
1527 * disassociate this buffer from the vnode (if any).
1528 */
1529 if (vbp->vb_buf.b_vp != NULL) {
1530 brelvp(&vbp->vb_buf);
1531 }
1532
1533 /*
1534 * kill vbp structure
1535 */
1536 putvndbuf(vbp);
1537
1538 /*
1539 * wrap up this transaction if it has run to completion or, in
1540 * case of an error, when all auxiliary buffers have returned.
1541 */
1542 if (vnx->vx_error != 0) {
1543 /* pass error upward */
1544 pbp->b_flags |= B_ERROR;
1545 pbp->b_error = vnx->vx_error;
1546 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1547 putvndxfer(vnx);
1548 biodone(pbp);
1549 }
1550 } else if (pbp->b_resid == 0) {
1551 KASSERT(vnx->vx_pending == 0);
1552 if ((vnx->vx_flags & VX_BUSY) == 0) {
1553 UVMHIST_LOG(pdhist, " iodone error=%ld !",
1554 pbp, vnx->vx_error, 0, 0);
1555 putvndxfer(vnx);
1556 biodone(pbp);
1557 }
1558 }
1559
1560 /*
1561 * done! start next swapdev I/O if one is pending
1562 */
1563 sdp->swd_tab.b_active--;
1564 sw_reg_start(sdp);
1565 }
1566
1567
1568 /*
1569 * uvm_swap_alloc: allocate space on swap
1570 *
1571 * => allocation is done "round robin" down the priority list, as we
1572 * allocate in a priority we "rotate" the circle queue.
1573 * => space can be freed with uvm_swap_free
1574 * => we return the page slot number in /dev/drum (0 == invalid slot)
1575 * => we lock uvm.swap_data_lock
1576 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1577 */
1578 int
1579 uvm_swap_alloc(nslots, lessok)
1580 int *nslots; /* IN/OUT */
1581 boolean_t lessok;
1582 {
1583 struct swapdev *sdp;
1584 struct swappri *spp;
1585 u_long result;
1586 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1587
1588 /*
1589 * no swap devices configured yet? definite failure.
1590 */
1591 if (uvmexp.nswapdev < 1)
1592 return 0;
1593
1594 /*
1595 * lock data lock, convert slots into blocks, and enter loop
1596 */
1597 simple_lock(&uvm.swap_data_lock);
1598
1599 ReTry: /* XXXMRG */
1600 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1601 spp = LIST_NEXT(spp, spi_swappri)) {
1602 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1603 sdp != (void *)&spp->spi_swapdev;
1604 sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1605 /* if it's not enabled, then we can't swap from it */
1606 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1607 continue;
1608 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1609 continue;
1610 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 0,
1611 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1612 &result) != 0) {
1613 continue;
1614 }
1615
1616 /*
1617 * successful allocation! now rotate the circleq.
1618 */
1619 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1620 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1621 sdp->swd_npginuse += *nslots;
1622 uvmexp.swpginuse += *nslots;
1623 simple_unlock(&uvm.swap_data_lock);
1624 /* done! return drum slot number */
1625 UVMHIST_LOG(pdhist,
1626 "success! returning %ld slots starting at %ld",
1627 *nslots, result + sdp->swd_drumoffset, 0, 0);
1628 return(result + sdp->swd_drumoffset);
1629 }
1630 }
1631
1632 /* XXXMRG: BEGIN HACK */
1633 if (*nslots > 1 && lessok) {
1634 *nslots = 1;
1635 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1636 }
1637 /* XXXMRG: END HACK */
1638
1639 simple_unlock(&uvm.swap_data_lock);
1640 return 0; /* failed */
1641 }
1642
1643 /*
1644 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1645 *
1646 * => we lock uvm.swap_data_lock
1647 */
1648 void
1649 uvm_swap_markbad(startslot, nslots)
1650 int startslot;
1651 int nslots;
1652 {
1653 struct swapdev *sdp;
1654 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1655
1656 simple_lock(&uvm.swap_data_lock);
1657 sdp = swapdrum_getsdp(startslot);
1658 if (sdp != NULL) {
1659 /*
1660 * we just keep track of how many pages have been marked bad
1661 * in this device, to make everything add up in swap_off().
1662 * we assume here that the range of slots will all be within
1663 * one swap device.
1664 */
1665 sdp->swd_npgbad += nslots;
1666 UVMHIST_LOG(pdhist, "now %ld bad", sdp->swd_npgbad, 0,0,0);
1667 }
1668 simple_unlock(&uvm.swap_data_lock);
1669 }
1670
1671 /*
1672 * uvm_swap_free: free swap slots
1673 *
1674 * => this can be all or part of an allocation made by uvm_swap_alloc
1675 * => we lock uvm.swap_data_lock
1676 */
1677 void
1678 uvm_swap_free(startslot, nslots)
1679 int startslot;
1680 int nslots;
1681 {
1682 struct swapdev *sdp;
1683 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1684
1685 UVMHIST_LOG(pdhist, "freeing %ld slots starting at %ld", nslots,
1686 startslot, 0, 0);
1687
1688 /*
1689 * ignore attempts to free the "bad" slot.
1690 */
1691
1692 if (startslot == SWSLOT_BAD) {
1693 return;
1694 }
1695
1696 /*
1697 * convert drum slot offset back to sdp, free the blocks
1698 * in the extent, and return. must hold pri lock to do
1699 * lookup and access the extent.
1700 */
1701
1702 simple_lock(&uvm.swap_data_lock);
1703 sdp = swapdrum_getsdp(startslot);
1704 KASSERT(uvmexp.nswapdev >= 1);
1705 KASSERT(sdp != NULL);
1706 KASSERT(sdp->swd_npginuse >= nslots);
1707 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1708 EX_MALLOCOK|EX_NOWAIT) != 0) {
1709 printf("warning: resource shortage: %d pages of swap lost\n",
1710 nslots);
1711 }
1712
1713 sdp->swd_npginuse -= nslots;
1714 uvmexp.swpginuse -= nslots;
1715 #ifdef UVM_SWAP_ENCRYPT
1716 {
1717 int i;
1718 if (swap_encrypt_initialized) {
1719 /* Dereference keys */
1720 for (i = 0; i < nslots; i++)
1721 if (uvm_swap_needdecrypt(sdp, startslot + i))
1722 SWAP_KEY_PUT(sdp, SWD_KEY(sdp, startslot + i));
1723
1724 /* Mark range as not decrypt */
1725 uvm_swap_markdecrypt(sdp, startslot, nslots, 0);
1726 }
1727 }
1728 #endif /* UVM_SWAP_ENCRYPT */
1729 simple_unlock(&uvm.swap_data_lock);
1730 }
1731
1732 /*
1733 * uvm_swap_put: put any number of pages into a contig place on swap
1734 *
1735 * => can be sync or async
1736 * => XXXMRG: consider making it an inline or macro
1737 */
1738 int
1739 uvm_swap_put(swslot, ppsp, npages, flags)
1740 int swslot;
1741 struct vm_page **ppsp;
1742 int npages;
1743 int flags;
1744 {
1745 int result;
1746
1747 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1748 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1749
1750 return (result);
1751 }
1752
1753 /*
1754 * uvm_swap_get: get a single page from swap
1755 *
1756 * => usually a sync op (from fault)
1757 * => XXXMRG: consider making it an inline or macro
1758 */
1759 int
1760 uvm_swap_get(page, swslot, flags)
1761 struct vm_page *page;
1762 int swslot, flags;
1763 {
1764 int result;
1765
1766 uvmexp.nswget++;
1767 KASSERT(flags & PGO_SYNCIO);
1768 if (swslot == SWSLOT_BAD) {
1769 return VM_PAGER_ERROR;
1770 }
1771
1772 /*
1773 * this page is (about to be) no longer only in swap.
1774 */
1775 simple_lock(&uvm.swap_data_lock);
1776 uvmexp.swpgonly--;
1777 simple_unlock(&uvm.swap_data_lock);
1778
1779 result = uvm_swap_io(&page, swslot, 1, B_READ |
1780 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1781
1782 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1783 /*
1784 * oops, the read failed so it really is still only in swap.
1785 */
1786 simple_lock(&uvm.swap_data_lock);
1787 uvmexp.swpgonly++;
1788 simple_unlock(&uvm.swap_data_lock);
1789 }
1790
1791 return (result);
1792 }
1793
1794 /*
1795 * uvm_swap_io: do an i/o operation to swap
1796 */
1797
1798 static int
1799 uvm_swap_io(pps, startslot, npages, flags)
1800 struct vm_page **pps;
1801 int startslot, npages, flags;
1802 {
1803 daddr64_t startblk;
1804 struct buf *bp;
1805 vaddr_t kva;
1806 int result, s, mapinflags, pflag;
1807 boolean_t write, async;
1808 #ifdef UVM_SWAP_ENCRYPT
1809 vaddr_t dstkva;
1810 struct vm_page *tpps[MAXBSIZE >> PAGE_SHIFT];
1811 struct swapdev *sdp;
1812 int encrypt = 0;
1813 #endif
1814 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1815
1816 UVMHIST_LOG(pdhist, "<- called, startslot=%ld, npages=%ld, flags=%ld",
1817 startslot, npages, flags, 0);
1818
1819 write = (flags & B_READ) == 0;
1820 async = (flags & B_ASYNC) != 0;
1821
1822 /*
1823 * convert starting drum slot to block number
1824 */
1825 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1826
1827 /*
1828 * first, map the pages into the kernel (XXX: currently required
1829 * by buffer system).
1830 */
1831 mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1832 if (!async)
1833 mapinflags |= UVMPAGER_MAPIN_WAITOK;
1834 kva = uvm_pagermapin(pps, npages, mapinflags);
1835 if (kva == 0)
1836 return (VM_PAGER_AGAIN);
1837
1838 #ifdef UVM_SWAP_ENCRYPT
1839 if (write) {
1840 /*
1841 * Check if we need to do swap encryption on old pages.
1842 * Later we need a different scheme, that swap encrypts
1843 * all pages of a process that had at least one page swap
1844 * encrypted. Then we might not need to copy all pages
1845 * in the cluster, and avoid the memory overheard in
1846 * swapping.
1847 */
1848 if (uvm_doswapencrypt)
1849 encrypt = 1;
1850 }
1851
1852 if (swap_encrypt_initialized || encrypt) {
1853 /*
1854 * we need to know the swap device that we are swapping to/from
1855 * to see if the pages need to be marked for decryption or
1856 * actually need to be decrypted.
1857 * XXX - does this information stay the same over the whole
1858 * execution of this function?
1859 */
1860 simple_lock(&uvm.swap_data_lock);
1861 sdp = swapdrum_getsdp(startslot);
1862 simple_unlock(&uvm.swap_data_lock);
1863 }
1864
1865 /*
1866 * encrypt to swap
1867 */
1868 if (write && encrypt) {
1869 int i, opages;
1870 caddr_t src, dst;
1871 struct swap_key *key;
1872 u_int64_t block;
1873 int swmapflags;
1874
1875 /* We always need write access. */
1876 swmapflags = UVMPAGER_MAPIN_READ;
1877 if (!async)
1878 swmapflags |= UVMPAGER_MAPIN_WAITOK;
1879
1880 if (!uvm_swap_allocpages(tpps, npages)) {
1881 uvm_pagermapout(kva, npages);
1882 return (VM_PAGER_AGAIN);
1883 }
1884
1885 dstkva = uvm_pagermapin(tpps, npages, swmapflags);
1886 if (dstkva == 0) {
1887 uvm_pagermapout(kva, npages);
1888 uvm_swap_freepages(tpps, npages);
1889 return (VM_PAGER_AGAIN);
1890 }
1891
1892 src = (caddr_t) kva;
1893 dst = (caddr_t) dstkva;
1894 block = startblk;
1895 for (i = 0; i < npages; i++) {
1896 key = SWD_KEY(sdp, startslot + i);
1897 SWAP_KEY_GET(sdp, key); /* add reference */
1898
1899 /* mark for async writes */
1900 atomic_setbits_int(&tpps[i]->pg_flags, PQ_ENCRYPT);
1901 swap_encrypt(key, src, dst, block, 1 << PAGE_SHIFT);
1902 src += 1 << PAGE_SHIFT;
1903 dst += 1 << PAGE_SHIFT;
1904 block += btodb(1 << PAGE_SHIFT);
1905 }
1906
1907 uvm_pagermapout(kva, npages);
1908
1909 /* dispose of pages we dont use anymore */
1910 opages = npages;
1911 uvm_pager_dropcluster(NULL, NULL, pps, &opages,
1912 PGO_PDFREECLUST);
1913
1914 kva = dstkva;
1915 }
1916 #endif /* UVM_SWAP_ENCRYPT */
1917
1918 /*
1919 * now allocate a buf for the i/o.
1920 * [make sure we don't put the pagedaemon to sleep...]
1921 */
1922 s = splbio();
1923 pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
1924 bp = pool_get(&bufpool, pflag);
1925 splx(s);
1926
1927 /*
1928 * if we failed to get a swapbuf, return "try again"
1929 */
1930 if (bp == NULL) {
1931 #ifdef UVM_SWAP_ENCRYPT
1932 if (write && encrypt) {
1933 int i;
1934
1935 /* swap encrypt needs cleanup */
1936 for (i = 0; i < npages; i++)
1937 SWAP_KEY_PUT(sdp, SWD_KEY(sdp, startslot + i));
1938
1939 uvm_pagermapout(kva, npages);
1940 uvm_swap_freepages(tpps, npages);
1941 }
1942 #endif
1943 return (VM_PAGER_AGAIN);
1944 }
1945
1946 #ifdef UVM_SWAP_ENCRYPT
1947 /*
1948 * prevent ASYNC reads.
1949 * uvm_swap_io is only called from uvm_swap_get, uvm_swap_get
1950 * assumes that all gets are SYNCIO. Just make sure here.
1951 * XXXARTUBC - might not be true anymore.
1952 */
1953 if (!write) {
1954 flags &= ~B_ASYNC;
1955 async = 0;
1956 }
1957 #endif
1958 /*
1959 * fill in the bp. we currently route our i/o through
1960 * /dev/drum's vnode [swapdev_vp].
1961 */
1962 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1963 bp->b_proc = &proc0; /* XXX */
1964 bp->b_vnbufs.le_next = NOLIST;
1965 bp->b_data = (caddr_t)kva;
1966 bp->b_blkno = startblk;
1967 LIST_INIT(&bp->b_dep);
1968 s = splbio();
1969 bp->b_vp = NULL;
1970 buf_replacevnode(bp, swapdev_vp);
1971 splx(s);
1972 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1973
1974 /*
1975 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1976 * and we bump v_numoutput (counter of number of active outputs).
1977 */
1978 if (write) {
1979 bp->b_dirtyoff = 0;
1980 bp->b_dirtyend = npages << PAGE_SHIFT;
1981 #ifdef UVM_SWAP_ENCRYPT
1982 /* mark the pages in the drum for decryption */
1983 if (swap_encrypt_initialized)
1984 uvm_swap_markdecrypt(sdp, startslot, npages, encrypt);
1985 #endif
1986 s = splbio();
1987 swapdev_vp->v_numoutput++;
1988 splx(s);
1989 }
1990
1991 /*
1992 * for async ops we must set up the iodone handler.
1993 */
1994 if (async) {
1995 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1996 B_PDAEMON : 0);
1997 bp->b_iodone = uvm_aio_biodone;
1998 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1999 }
2000 UVMHIST_LOG(pdhist,
2001 "about to start io: data = %p blkno = 0x%lx, bcount = %ld",
2002 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
2003
2004 /*
2005 * now we start the I/O, and if async, return.
2006 */
2007 VOP_STRATEGY(bp);
2008 if (async)
2009 return (VM_PAGER_PEND);
2010
2011 /*
2012 * must be sync i/o. wait for it to finish
2013 */
2014 (void) biowait(bp);
2015 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
2016
2017 #ifdef UVM_SWAP_ENCRYPT
2018 /*
2019 * decrypt swap
2020 */
2021 if (swap_encrypt_initialized &&
2022 (bp->b_flags & B_READ) && !(bp->b_flags & B_ERROR)) {
2023 int i;
2024 caddr_t data = bp->b_data;
2025 u_int64_t block = startblk;
2026 struct swap_key *key = NULL;
2027
2028 for (i = 0; i < npages; i++) {
2029 /* Check if we need to decrypt */
2030 if (uvm_swap_needdecrypt(sdp, startslot + i)) {
2031 key = SWD_KEY(sdp, startslot + i);
2032 swap_decrypt(key, data, data, block,
2033 1 << PAGE_SHIFT);
2034 }
2035 data += 1 << PAGE_SHIFT;
2036 block += btodb(1 << PAGE_SHIFT);
2037 }
2038 }
2039 #endif
2040 /*
2041 * kill the pager mapping
2042 */
2043 uvm_pagermapout(kva, npages);
2044
2045 #ifdef UVM_SWAP_ENCRYPT
2046 /*
2047 * Not anymore needed, free after encryption
2048 */
2049 if ((bp->b_flags & B_READ) == 0 && encrypt)
2050 uvm_swap_freepages(tpps, npages);
2051 #endif
2052 /*
2053 * now dispose of the buf
2054 */
2055 s = splbio();
2056 if (bp->b_vp)
2057 brelvp(bp);
2058
2059 if (write && bp->b_vp)
2060 vwakeup(bp->b_vp);
2061 pool_put(&bufpool, bp);
2062 splx(s);
2063
2064 /*
2065 * finally return.
2066 */
2067 UVMHIST_LOG(pdhist, "<- done (sync) result=%ld", result, 0, 0, 0);
2068 return (result);
2069 }
2070
2071 static void
2072 swapmount()
2073 {
2074 struct swapdev *sdp;
2075 struct swappri *spp;
2076 struct vnode *vp;
2077 dev_t swap_dev = swdevt[0].sw_dev;
2078
2079 /*
2080 * No locking here since we happen to know that we will just be called
2081 * once before any other process has forked.
2082 */
2083
2084 if (swap_dev == NODEV) {
2085 printf("swapmount: no device\n");
2086 return;
2087 }
2088
2089 if (bdevvp(swap_dev, &vp)) {
2090 printf("swapmount: no device 2\n");
2091 return;
2092 }
2093
2094 sdp = malloc(sizeof(*sdp), M_VMSWAP, M_WAITOK);
2095 spp = malloc(sizeof(*spp), M_VMSWAP, M_WAITOK);
2096 memset(sdp, 0, sizeof(*sdp));
2097
2098 sdp->swd_flags = SWF_FAKE;
2099 sdp->swd_dev = swap_dev;
2100 sdp->swd_vp = vp;
2101 swaplist_insert(sdp, spp, 0);
2102 sdp->swd_pathlen = strlen("swap_device") + 1;
2103 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
2104 if (copystr("swap_device", sdp->swd_path, sdp->swd_pathlen, 0))
2105 panic("swapmount: copystr");
2106
2107 if (swap_on(curproc, sdp)) {
2108 swaplist_find(vp, 1);
2109 swaplist_trim();
2110 vput(sdp->swd_vp);
2111 free(sdp->swd_path, M_VMSWAP);
2112 free(sdp, M_VMSWAP);
2113 return;
2114 }
2115
2116 VOP_UNLOCK(vp, 0, curproc);
2117 }