root/uvm/uvm_page.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. uvm_pageinsert
  2. uvm_pageremove
  3. uvm_page_init
  4. uvm_setpagesize
  5. uvm_pageboot_alloc
  6. uvm_page_physget_freelist
  7. uvm_page_physget
  8. uvm_page_physload
  9. uvm_page_rehash
  10. uvm_page_physdump
  11. uvm_pagealloc_strat
  12. uvm_pagerealloc
  13. uvm_pagefree
  14. uvm_page_unbusy
  15. uvm_page_own
  16. uvm_pageidlezero

    1 /*      $OpenBSD: uvm_page.c,v 1.61 2007/06/18 21:51:15 pedro Exp $     */
    2 /*      $NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $        */
    3 
    4 /* 
    5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
    6  * Copyright (c) 1991, 1993, The Regents of the University of California.  
    7  *
    8  * All rights reserved.
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by Charles D. Cranor,
   24  *      Washington University, the University of California, Berkeley and 
   25  *      its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)vm_page.c   8.3 (Berkeley) 3/21/94
   43  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
   44  *
   45  *
   46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   47  * All rights reserved.
   48  * 
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  * 
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  * 
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  * uvm_page.c: page ops.
   72  */
   73 
   74 #define UVM_PAGE                /* pull in uvm_page.h functions */
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/malloc.h>
   78 #include <sys/sched.h>
   79 #include <sys/kernel.h>
   80 #include <sys/vnode.h>
   81 
   82 #include <uvm/uvm.h>
   83 
   84 /*
   85  * global vars... XXXCDC: move to uvm. structure.
   86  */
   87 
   88 /*
   89  * physical memory config is stored in vm_physmem.
   90  */
   91 
   92 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];   /* XXXCDC: uvm.physmem */
   93 int vm_nphysseg = 0;                            /* XXXCDC: uvm.nphysseg */
   94 
   95 /*
   96  * Some supported CPUs in a given architecture don't support all
   97  * of the things necessary to do idle page zero'ing efficiently.
   98  * We therefore provide a way to disable it from machdep code here.
   99  */
  100 
  101 /*
  102  * XXX disabled until we can find a way to do this without causing
  103  * problems for either cpu caches or DMA latency.
  104  */
  105 boolean_t vm_page_zero_enable = FALSE;
  106 
  107 /*
  108  * local variables
  109  */
  110 
  111 /*
  112  * these variables record the values returned by vm_page_bootstrap,
  113  * for debugging purposes.  The implementation of uvm_pageboot_alloc
  114  * and pmap_startup here also uses them internally.
  115  */
  116 
  117 static vaddr_t      virtual_space_start;
  118 static vaddr_t      virtual_space_end;
  119 
  120 /*
  121  * we use a hash table with only one bucket during bootup.  we will
  122  * later rehash (resize) the hash table once the allocator is ready.
  123  * we static allocate the one bootstrap bucket below...
  124  */
  125 
  126 static struct pglist uvm_bootbucket;
  127 
  128 /*
  129  * History
  130  */
  131 UVMHIST_DECL(pghist);
  132 
  133 /*
  134  * local prototypes
  135  */
  136 
  137 static void uvm_pageinsert(struct vm_page *);
  138 static void uvm_pageremove(struct vm_page *);
  139 
  140 /*
  141  * inline functions
  142  */
  143 
  144 /*
  145  * uvm_pageinsert: insert a page in the object and the hash table
  146  *
  147  * => caller must lock object
  148  * => caller must lock page queues
  149  * => call should have already set pg's object and offset pointers
  150  *    and bumped the version counter
  151  */
  152 
  153 __inline static void
  154 uvm_pageinsert(struct vm_page *pg)
  155 {
  156         struct pglist *buck;
  157         int s;
  158         UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
  159 
  160         KASSERT((pg->pg_flags & PG_TABLED) == 0);
  161         buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
  162         s = splvm();
  163         simple_lock(&uvm.hashlock);
  164         TAILQ_INSERT_TAIL(buck, pg, hashq);     /* put in hash */
  165         simple_unlock(&uvm.hashlock);
  166         splx(s);
  167 
  168         TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
  169         atomic_setbits_int(&pg->pg_flags, PG_TABLED);
  170         pg->uobject->uo_npages++;
  171 }
  172 
  173 /*
  174  * uvm_page_remove: remove page from object and hash
  175  *
  176  * => caller must lock object
  177  * => caller must lock page queues
  178  */
  179 
  180 static __inline void
  181 uvm_pageremove(struct vm_page *pg)
  182 {
  183         struct pglist *buck;
  184         int s;
  185         UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
  186 
  187         KASSERT(pg->pg_flags & PG_TABLED);
  188         buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
  189         s = splvm();
  190         simple_lock(&uvm.hashlock);
  191         TAILQ_REMOVE(buck, pg, hashq);
  192         simple_unlock(&uvm.hashlock);
  193         splx(s);
  194 
  195 #ifdef UBC
  196         if (pg->uobject->pgops == &uvm_vnodeops) {
  197                 uvm_pgcnt_vnode--;
  198         }
  199 #endif
  200 
  201         /* object should be locked */
  202         TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
  203 
  204         atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
  205         pg->uobject->uo_npages--;
  206         pg->uobject = NULL;
  207         pg->pg_version++;
  208 }
  209 
  210 /*
  211  * uvm_page_init: init the page system.   called from uvm_init().
  212  * 
  213  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
  214  */
  215 
  216 void
  217 uvm_page_init(kvm_startp, kvm_endp)
  218         vaddr_t *kvm_startp, *kvm_endp;
  219 {
  220         vsize_t freepages, pagecount, n;
  221         vm_page_t pagearray;
  222         int lcv, i;  
  223         paddr_t paddr;
  224 #if defined(UVMHIST)   
  225         static struct uvm_history_ent pghistbuf[100];
  226 #endif
  227 
  228         UVMHIST_FUNC("uvm_page_init");
  229         UVMHIST_INIT_STATIC(pghist, pghistbuf);
  230         UVMHIST_CALLED(pghist);
  231 
  232         /*
  233          * init the page queues and page queue locks
  234          */
  235 
  236         for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
  237                 for (i = 0; i < PGFL_NQUEUES; i++)
  238                         TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
  239         }
  240         TAILQ_INIT(&uvm.page_active);
  241         TAILQ_INIT(&uvm.page_inactive_swp);
  242         TAILQ_INIT(&uvm.page_inactive_obj);
  243         simple_lock_init(&uvm.pageqlock);
  244         simple_lock_init(&uvm.fpageqlock);
  245 
  246         /*
  247          * init the <obj,offset> => <page> hash table.  for now
  248          * we just have one bucket (the bootstrap bucket).  later on we
  249          * will allocate new buckets as we dynamically resize the hash table.
  250          */
  251 
  252         uvm.page_nhash = 1;                     /* 1 bucket */
  253         uvm.page_hashmask = 0;                  /* mask for hash function */
  254         uvm.page_hash = &uvm_bootbucket;        /* install bootstrap bucket */
  255         TAILQ_INIT(uvm.page_hash);              /* init hash table */
  256         simple_lock_init(&uvm.hashlock);        /* init hash table lock */
  257 
  258         /* 
  259          * allocate vm_page structures.
  260          */
  261 
  262         /*
  263          * sanity check:
  264          * before calling this function the MD code is expected to register
  265          * some free RAM with the uvm_page_physload() function.   our job
  266          * now is to allocate vm_page structures for this memory.
  267          */
  268 
  269         if (vm_nphysseg == 0)
  270                 panic("uvm_page_bootstrap: no memory pre-allocated");
  271         
  272         /*
  273          * first calculate the number of free pages...  
  274          *
  275          * note that we use start/end rather than avail_start/avail_end.
  276          * this allows us to allocate extra vm_page structures in case we
  277          * want to return some memory to the pool after booting.
  278          */
  279          
  280         freepages = 0;
  281         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  282                 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
  283 
  284         /*
  285          * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
  286          * use.   for each page of memory we use we need a vm_page structure.
  287          * thus, the total number of pages we can use is the total size of
  288          * the memory divided by the PAGE_SIZE plus the size of the vm_page
  289          * structure.   we add one to freepages as a fudge factor to avoid
  290          * truncation errors (since we can only allocate in terms of whole
  291          * pages).
  292          */
  293          
  294         pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
  295             (PAGE_SIZE + sizeof(struct vm_page));
  296         pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
  297             sizeof(struct vm_page));
  298         memset(pagearray, 0, pagecount * sizeof(struct vm_page));
  299                                          
  300         /*
  301          * init the vm_page structures and put them in the correct place.
  302          */
  303 
  304         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
  305                 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
  306                 if (n > pagecount) {
  307                         printf("uvm_page_init: lost %ld page(s) in init\n",
  308                             (long)(n - pagecount));
  309                         panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
  310                         /* n = pagecount; */
  311                 }
  312 
  313                 /* set up page array pointers */
  314                 vm_physmem[lcv].pgs = pagearray;
  315                 pagearray += n;
  316                 pagecount -= n;
  317                 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
  318 
  319                 /* init and free vm_pages (we've already zeroed them) */
  320                 paddr = ptoa(vm_physmem[lcv].start);
  321                 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
  322                         vm_physmem[lcv].pgs[i].phys_addr = paddr;
  323 #ifdef __HAVE_VM_PAGE_MD
  324                         VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
  325 #endif
  326                         if (atop(paddr) >= vm_physmem[lcv].avail_start &&
  327                             atop(paddr) <= vm_physmem[lcv].avail_end) {
  328                                 uvmexp.npages++;
  329                                 /* add page to free pool */
  330                                 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
  331                         }
  332                 }
  333         }
  334 
  335         /*
  336          * pass up the values of virtual_space_start and
  337          * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
  338          * layers of the VM.
  339          */
  340 
  341         *kvm_startp = round_page(virtual_space_start);
  342         *kvm_endp = trunc_page(virtual_space_end);
  343 
  344         /*
  345          * init locks for kernel threads
  346          */
  347 
  348         simple_lock_init(&uvm.pagedaemon_lock);
  349         simple_lock_init(&uvm.aiodoned_lock);
  350 
  351         /*
  352          * init reserve thresholds
  353          * XXXCDC - values may need adjusting
  354          */
  355         uvmexp.reserve_pagedaemon = 4;
  356         uvmexp.reserve_kernel = 6;
  357         uvmexp.anonminpct = 10;
  358         uvmexp.vnodeminpct = 10;
  359         uvmexp.vtextminpct = 5;
  360         uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
  361         uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
  362         uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
  363 
  364         /*
  365          * determine if we should zero pages in the idle loop.
  366          */
  367 
  368         uvm.page_idle_zero = vm_page_zero_enable;
  369 
  370         /*
  371          * done!
  372          */
  373 
  374         uvm.page_init_done = TRUE;
  375 }
  376 
  377 /*
  378  * uvm_setpagesize: set the page size
  379  * 
  380  * => sets page_shift and page_mask from uvmexp.pagesize.
  381  */   
  382 
  383 void
  384 uvm_setpagesize()
  385 {
  386         if (uvmexp.pagesize == 0)
  387                 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
  388         uvmexp.pagemask = uvmexp.pagesize - 1;
  389         if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
  390                 panic("uvm_setpagesize: page size not a power of two");
  391         for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
  392                 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
  393                         break;
  394 }
  395 
  396 /*
  397  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
  398  */
  399 
  400 vaddr_t
  401 uvm_pageboot_alloc(size)
  402         vsize_t size;
  403 {
  404 #if defined(PMAP_STEAL_MEMORY)
  405         vaddr_t addr;
  406 
  407         /* 
  408          * defer bootstrap allocation to MD code (it may want to allocate 
  409          * from a direct-mapped segment).  pmap_steal_memory should round
  410          * off virtual_space_start/virtual_space_end.
  411          */
  412 
  413         addr = pmap_steal_memory(size, &virtual_space_start,
  414             &virtual_space_end);
  415 
  416         return(addr);
  417 
  418 #else /* !PMAP_STEAL_MEMORY */
  419 
  420         static boolean_t initialized = FALSE;
  421         vaddr_t addr, vaddr;
  422         paddr_t paddr;
  423 
  424         /* round to page size */
  425         size = round_page(size);
  426 
  427         /*
  428          * on first call to this function, initialize ourselves.
  429          */
  430         if (initialized == FALSE) {
  431                 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
  432 
  433                 /* round it the way we like it */
  434                 virtual_space_start = round_page(virtual_space_start);
  435                 virtual_space_end = trunc_page(virtual_space_end);
  436 
  437                 initialized = TRUE;
  438         }
  439 
  440         /*
  441          * allocate virtual memory for this request
  442          */
  443         if (virtual_space_start == virtual_space_end ||
  444             (virtual_space_end - virtual_space_start) < size)
  445                 panic("uvm_pageboot_alloc: out of virtual space");
  446 
  447         addr = virtual_space_start;
  448 
  449 #ifdef PMAP_GROWKERNEL
  450         /*
  451          * If the kernel pmap can't map the requested space,
  452          * then allocate more resources for it.
  453          */
  454         if (uvm_maxkaddr < (addr + size)) {
  455                 uvm_maxkaddr = pmap_growkernel(addr + size);
  456                 if (uvm_maxkaddr < (addr + size))
  457                         panic("uvm_pageboot_alloc: pmap_growkernel() failed");
  458         }
  459 #endif
  460 
  461         virtual_space_start += size;
  462 
  463         /*
  464          * allocate and mapin physical pages to back new virtual pages
  465          */
  466 
  467         for (vaddr = round_page(addr) ; vaddr < addr + size ;
  468             vaddr += PAGE_SIZE) {
  469 
  470                 if (!uvm_page_physget(&paddr))
  471                         panic("uvm_pageboot_alloc: out of memory");
  472 
  473                 /*
  474                  * Note this memory is no longer managed, so using
  475                  * pmap_kenter is safe.
  476                  */
  477                 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
  478         }
  479         pmap_update(pmap_kernel());
  480         return(addr);
  481 #endif  /* PMAP_STEAL_MEMORY */
  482 }
  483 
  484 #if !defined(PMAP_STEAL_MEMORY)
  485 /*
  486  * uvm_page_physget: "steal" one page from the vm_physmem structure.
  487  *
  488  * => attempt to allocate it off the end of a segment in which the "avail"
  489  *    values match the start/end values.   if we can't do that, then we
  490  *    will advance both values (making them equal, and removing some
  491  *    vm_page structures from the non-avail area).
  492  * => return false if out of memory.
  493  */
  494 
  495 /* subroutine: try to allocate from memory chunks on the specified freelist */
  496 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
  497 
  498 static boolean_t
  499 uvm_page_physget_freelist(paddrp, freelist)
  500         paddr_t *paddrp;
  501         int freelist;
  502 {
  503         int lcv, x;
  504         UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
  505 
  506         /* pass 1: try allocating from a matching end */
  507 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
  508         (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
  509         for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
  510 #else
  511         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  512 #endif
  513         {
  514 
  515                 if (uvm.page_init_done == TRUE)
  516                         panic("uvm_page_physget: called _after_ bootstrap");
  517 
  518                 if (vm_physmem[lcv].free_list != freelist)
  519                         continue;
  520 
  521                 /* try from front */
  522                 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
  523                     vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
  524                         *paddrp = ptoa(vm_physmem[lcv].avail_start);
  525                         vm_physmem[lcv].avail_start++;
  526                         vm_physmem[lcv].start++;
  527                         /* nothing left?   nuke it */
  528                         if (vm_physmem[lcv].avail_start ==
  529                             vm_physmem[lcv].end) {
  530                                 if (vm_nphysseg == 1)
  531                                     panic("uvm_page_physget: out of memory!");
  532                                 vm_nphysseg--;
  533                                 for (x = lcv ; x < vm_nphysseg ; x++)
  534                                         /* structure copy */
  535                                         vm_physmem[x] = vm_physmem[x+1];
  536                         }
  537                         return (TRUE);
  538                 }
  539 
  540                 /* try from rear */
  541                 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
  542                     vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
  543                         *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
  544                         vm_physmem[lcv].avail_end--;
  545                         vm_physmem[lcv].end--;
  546                         /* nothing left?   nuke it */
  547                         if (vm_physmem[lcv].avail_end ==
  548                             vm_physmem[lcv].start) {
  549                                 if (vm_nphysseg == 1)
  550                                     panic("uvm_page_physget: out of memory!");
  551                                 vm_nphysseg--;
  552                                 for (x = lcv ; x < vm_nphysseg ; x++)
  553                                         /* structure copy */
  554                                         vm_physmem[x] = vm_physmem[x+1];
  555                         }
  556                         return (TRUE);
  557                 }
  558         }
  559 
  560         /* pass2: forget about matching ends, just allocate something */
  561 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
  562         (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
  563         for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
  564 #else
  565         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  566 #endif
  567         {
  568 
  569                 /* any room in this bank? */
  570                 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
  571                         continue;  /* nope */
  572 
  573                 *paddrp = ptoa(vm_physmem[lcv].avail_start);
  574                 vm_physmem[lcv].avail_start++;
  575                 /* truncate! */
  576                 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
  577 
  578                 /* nothing left?   nuke it */
  579                 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
  580                         if (vm_nphysseg == 1)
  581                                 panic("uvm_page_physget: out of memory!");
  582                         vm_nphysseg--;
  583                         for (x = lcv ; x < vm_nphysseg ; x++)
  584                                 /* structure copy */
  585                                 vm_physmem[x] = vm_physmem[x+1];
  586                 }
  587                 return (TRUE);
  588         }
  589 
  590         return (FALSE);        /* whoops! */
  591 }
  592 
  593 boolean_t
  594 uvm_page_physget(paddrp)
  595         paddr_t *paddrp;
  596 {
  597         int i;
  598         UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
  599 
  600         /* try in the order of freelist preference */
  601         for (i = 0; i < VM_NFREELIST; i++)
  602                 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
  603                         return (TRUE);
  604         return (FALSE);
  605 }
  606 #endif /* PMAP_STEAL_MEMORY */
  607 
  608 /*
  609  * uvm_page_physload: load physical memory into VM system
  610  *
  611  * => all args are PFs
  612  * => all pages in start/end get vm_page structures
  613  * => areas marked by avail_start/avail_end get added to the free page pool
  614  * => we are limited to VM_PHYSSEG_MAX physical memory segments
  615  */
  616 
  617 void
  618 uvm_page_physload(start, end, avail_start, avail_end, free_list)
  619         paddr_t start, end, avail_start, avail_end;
  620         int free_list;
  621 {
  622         int preload, lcv;
  623         psize_t npages;
  624         struct vm_page *pgs;
  625         struct vm_physseg *ps;
  626 
  627         if (uvmexp.pagesize == 0)
  628                 panic("uvm_page_physload: page size not set!");
  629 
  630         if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
  631                 panic("uvm_page_physload: bad free list %d", free_list);
  632 
  633         if (start >= end)
  634                 panic("uvm_page_physload: start >= end");
  635 
  636         /*
  637          * do we have room?
  638          */
  639         if (vm_nphysseg == VM_PHYSSEG_MAX) {
  640                 printf("uvm_page_physload: unable to load physical memory "
  641                     "segment\n");
  642                 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
  643                     VM_PHYSSEG_MAX, (long long)start, (long long)end);
  644                 printf("\tincrease VM_PHYSSEG_MAX\n");
  645                 return;
  646         }
  647 
  648         /*
  649          * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
  650          * called yet, so malloc is not available).
  651          */
  652         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
  653                 if (vm_physmem[lcv].pgs)
  654                         break;
  655         }
  656         preload = (lcv == vm_nphysseg);
  657 
  658         /*
  659          * if VM is already running, attempt to malloc() vm_page structures
  660          */
  661         if (!preload) {
  662 #if defined(VM_PHYSSEG_NOADD)
  663                 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
  664 #else
  665                 /* XXXCDC: need some sort of lockout for this case */
  666                 paddr_t paddr;
  667                 npages = end - start;  /* # of pages */
  668                 pgs = (vm_page *)uvm_km_alloc(kernel_map,
  669                     sizeof(struct vm_page) * npages);
  670                 if (pgs == NULL) {
  671                         printf("uvm_page_physload: can not malloc vm_page "
  672                             "structs for segment\n");
  673                         printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
  674                         return;
  675                 }
  676                 /* zero data, init phys_addr and free_list, and free pages */
  677                 memset(pgs, 0, sizeof(struct vm_page) * npages);
  678                 for (lcv = 0, paddr = ptoa(start) ;
  679                                  lcv < npages ; lcv++, paddr += PAGE_SIZE) {
  680                         pgs[lcv].phys_addr = paddr;
  681                         pgs[lcv].free_list = free_list;
  682                         if (atop(paddr) >= avail_start &&
  683                             atop(paddr) <= avail_end)
  684                                 uvm_pagefree(&pgs[lcv]);
  685                 }
  686                 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
  687                 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
  688 #endif
  689         } else {
  690 
  691                 /* gcc complains if these don't get init'd */
  692                 pgs = NULL;
  693                 npages = 0;
  694 
  695         }
  696 
  697         /*
  698          * now insert us in the proper place in vm_physmem[]
  699          */
  700 
  701 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
  702 
  703         /* random: put it at the end (easy!) */
  704         ps = &vm_physmem[vm_nphysseg];
  705 
  706 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
  707 
  708         {
  709                 int x;
  710                 /* sort by address for binary search */
  711                 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  712                         if (start < vm_physmem[lcv].start)
  713                                 break;
  714                 ps = &vm_physmem[lcv];
  715                 /* move back other entries, if necessary ... */
  716                 for (x = vm_nphysseg ; x > lcv ; x--)
  717                         /* structure copy */
  718                         vm_physmem[x] = vm_physmem[x - 1];
  719         }
  720 
  721 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
  722 
  723         {
  724                 int x;
  725                 /* sort by largest segment first */
  726                 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  727                         if ((end - start) >
  728                             (vm_physmem[lcv].end - vm_physmem[lcv].start))
  729                                 break;
  730                 ps = &vm_physmem[lcv];
  731                 /* move back other entries, if necessary ... */
  732                 for (x = vm_nphysseg ; x > lcv ; x--)
  733                         /* structure copy */
  734                         vm_physmem[x] = vm_physmem[x - 1];
  735         }
  736 
  737 #else
  738 
  739         panic("uvm_page_physload: unknown physseg strategy selected!");
  740 
  741 #endif
  742 
  743         ps->start = start;
  744         ps->end = end;
  745         ps->avail_start = avail_start;
  746         ps->avail_end = avail_end;
  747         if (preload) {
  748                 ps->pgs = NULL;
  749         } else {
  750                 ps->pgs = pgs;
  751                 ps->lastpg = pgs + npages - 1;
  752         }
  753         ps->free_list = free_list;
  754         vm_nphysseg++;
  755 
  756         /*
  757          * done!
  758          */
  759 
  760         if (!preload)
  761                 uvm_page_rehash();
  762 
  763         return;
  764 }
  765 
  766 /*
  767  * uvm_page_rehash: reallocate hash table based on number of free pages.
  768  */
  769 
  770 void
  771 uvm_page_rehash()
  772 {
  773         int freepages, lcv, bucketcount, s, oldcount;
  774         struct pglist *newbuckets, *oldbuckets;
  775         struct vm_page *pg;
  776         size_t newsize, oldsize;
  777 
  778         /*
  779          * compute number of pages that can go in the free pool
  780          */
  781 
  782         freepages = 0;
  783         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  784                 freepages +=
  785                     (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
  786 
  787         /*
  788          * compute number of buckets needed for this number of pages
  789          */
  790 
  791         bucketcount = 1;
  792         while (bucketcount < freepages)
  793                 bucketcount = bucketcount * 2;
  794 
  795         /*
  796          * compute the size of the current table and new table.
  797          */
  798 
  799         oldbuckets = uvm.page_hash;
  800         oldcount = uvm.page_nhash;
  801         oldsize = round_page(sizeof(struct pglist) * oldcount);
  802         newsize = round_page(sizeof(struct pglist) * bucketcount);
  803 
  804         /*
  805          * allocate the new buckets
  806          */
  807 
  808         newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
  809         if (newbuckets == NULL) {
  810                 printf("uvm_page_physrehash: WARNING: could not grow page "
  811                     "hash table\n");
  812                 return;
  813         }
  814         for (lcv = 0 ; lcv < bucketcount ; lcv++)
  815                 TAILQ_INIT(&newbuckets[lcv]);
  816 
  817         /*
  818          * now replace the old buckets with the new ones and rehash everything
  819          */
  820 
  821         s = splvm();
  822         simple_lock(&uvm.hashlock);
  823         uvm.page_hash = newbuckets;
  824         uvm.page_nhash = bucketcount;
  825         uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
  826 
  827         /* ... and rehash */
  828         for (lcv = 0 ; lcv < oldcount ; lcv++) {
  829                 while ((pg = TAILQ_FIRST(&oldbuckets[lcv])) != NULL) {
  830                         TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
  831                         TAILQ_INSERT_TAIL(
  832                           &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
  833                           pg, hashq);
  834                 }
  835         }
  836         simple_unlock(&uvm.hashlock);
  837         splx(s);
  838 
  839         /*
  840          * free old bucket array if is not the boot-time table
  841          */
  842 
  843         if (oldbuckets != &uvm_bootbucket)
  844                 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
  845 
  846         /*
  847          * done
  848          */
  849         return;
  850 }
  851 
  852 
  853 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
  854 
  855 void uvm_page_physdump(void); /* SHUT UP GCC */
  856 
  857 /* call from DDB */
  858 void
  859 uvm_page_physdump()
  860 {
  861         int lcv;
  862 
  863         printf("rehash: physical memory config [segs=%d of %d]:\n",
  864                                  vm_nphysseg, VM_PHYSSEG_MAX);
  865         for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
  866                 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
  867                     (long long)vm_physmem[lcv].start,
  868                     (long long)vm_physmem[lcv].end,
  869                     (long long)vm_physmem[lcv].avail_start,
  870                     (long long)vm_physmem[lcv].avail_end);
  871         printf("STRATEGY = ");
  872         switch (VM_PHYSSEG_STRAT) {
  873         case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
  874         case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
  875         case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
  876         default: printf("<<UNKNOWN>>!!!!\n");
  877         }
  878         printf("number of buckets = %d\n", uvm.page_nhash);
  879 }
  880 #endif
  881 
  882 /*
  883  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
  884  *
  885  * => return null if no pages free
  886  * => wake up pagedaemon if number of free pages drops below low water mark
  887  * => if obj != NULL, obj must be locked (to put in hash)
  888  * => if anon != NULL, anon must be locked (to put in anon)
  889  * => only one of obj or anon can be non-null
  890  * => caller must activate/deactivate page if it is not wired.
  891  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
  892  * => policy decision: it is more important to pull a page off of the
  893  *      appropriate priority free list than it is to get a zero'd or
  894  *      unknown contents page.  This is because we live with the
  895  *      consequences of a bad free list decision for the entire
  896  *      lifetime of the page, e.g. if the page comes from memory that
  897  *      is slower to access.
  898  */
  899 
  900 struct vm_page *
  901 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
  902         struct uvm_object *obj;
  903         voff_t off;
  904         int flags;
  905         struct vm_anon *anon;
  906         int strat, free_list;
  907 {
  908         int lcv, try1, try2, s, zeroit = 0;
  909         struct vm_page *pg;
  910         struct pglist *freeq;
  911         struct pgfreelist *pgfl;
  912         boolean_t use_reserve;
  913         UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
  914 
  915         KASSERT(obj == NULL || anon == NULL);
  916         KASSERT(off == trunc_page(off));
  917         s = uvm_lock_fpageq();
  918 
  919         /*
  920          * check to see if we need to generate some free pages waking
  921          * the pagedaemon.
  922          */
  923 
  924 #ifdef UBC
  925         if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
  926             (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
  927              uvmexp.inactive < uvmexp.inactarg)) {
  928                 wakeup(&uvm.pagedaemon);
  929         }
  930 #else
  931         if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
  932             uvmexp.inactive < uvmexp.inactarg))
  933                 wakeup(&uvm.pagedaemon);
  934 #endif
  935 
  936         /*
  937          * fail if any of these conditions is true:
  938          * [1]  there really are no free pages, or
  939          * [2]  only kernel "reserved" pages remain and
  940          *        the page isn't being allocated to a kernel object.
  941          * [3]  only pagedaemon "reserved" pages remain and
  942          *        the requestor isn't the pagedaemon.
  943          */
  944 
  945         use_reserve = (flags & UVM_PGA_USERESERVE) ||
  946                 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
  947         if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
  948             (uvmexp.free <= uvmexp.reserve_pagedaemon &&
  949              !(use_reserve && (curproc == uvm.pagedaemon_proc ||
  950                                 curproc == syncerproc))))
  951                 goto fail;
  952 
  953 #if PGFL_NQUEUES != 2
  954 #error uvm_pagealloc_strat needs to be updated
  955 #endif
  956 
  957         /*
  958          * If we want a zero'd page, try the ZEROS queue first, otherwise
  959          * we try the UNKNOWN queue first.
  960          */
  961         if (flags & UVM_PGA_ZERO) {
  962                 try1 = PGFL_ZEROS;
  963                 try2 = PGFL_UNKNOWN;
  964         } else {
  965                 try1 = PGFL_UNKNOWN;
  966                 try2 = PGFL_ZEROS;
  967         }
  968 
  969         UVMHIST_LOG(pghist, "obj=%p off=%lx anon=%p flags=%lx",
  970             obj, (u_long)off, anon, flags);
  971         UVMHIST_LOG(pghist, "strat=%ld free_list=%ld", strat, free_list, 0, 0);
  972  again:
  973         switch (strat) {
  974         case UVM_PGA_STRAT_NORMAL:
  975                 /* Check all freelists in descending priority order. */
  976                 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
  977                         pgfl = &uvm.page_free[lcv];
  978                         if ((pg = TAILQ_FIRST((freeq =
  979                               &pgfl->pgfl_queues[try1]))) != NULL ||
  980                             (pg = TAILQ_FIRST((freeq =
  981                               &pgfl->pgfl_queues[try2]))) != NULL)
  982                                 goto gotit;
  983                 }
  984 
  985                 /* No pages free! */
  986                 goto fail;
  987 
  988         case UVM_PGA_STRAT_ONLY:
  989         case UVM_PGA_STRAT_FALLBACK:
  990                 /* Attempt to allocate from the specified free list. */
  991                 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
  992                 pgfl = &uvm.page_free[free_list];
  993                 if ((pg = TAILQ_FIRST((freeq =
  994                       &pgfl->pgfl_queues[try1]))) != NULL ||
  995                     (pg = TAILQ_FIRST((freeq =
  996                       &pgfl->pgfl_queues[try2]))) != NULL)
  997                         goto gotit;
  998 
  999                 /* Fall back, if possible. */
 1000                 if (strat == UVM_PGA_STRAT_FALLBACK) {
 1001                         strat = UVM_PGA_STRAT_NORMAL;
 1002                         goto again;
 1003                 }
 1004 
 1005                 /* No pages free! */
 1006                 goto fail;
 1007 
 1008         default:
 1009                 panic("uvm_pagealloc_strat: bad strat %d", strat);
 1010                 /* NOTREACHED */
 1011         }
 1012 
 1013  gotit:
 1014         TAILQ_REMOVE(freeq, pg, pageq);
 1015         uvmexp.free--;
 1016 
 1017         /* update zero'd page count */
 1018         if (pg->pg_flags & PG_ZERO)
 1019                 uvmexp.zeropages--;
 1020 
 1021         /*
 1022          * update allocation statistics and remember if we have to
 1023          * zero the page
 1024          */
 1025         if (flags & UVM_PGA_ZERO) {
 1026                 if (pg->pg_flags & PG_ZERO) {
 1027                         uvmexp.pga_zerohit++;
 1028                         zeroit = 0;
 1029                 } else {
 1030                         uvmexp.pga_zeromiss++;
 1031                         zeroit = 1;
 1032                 }
 1033         }
 1034 
 1035         uvm_unlock_fpageq(s);           /* unlock free page queue */
 1036 
 1037         pg->offset = off;
 1038         pg->uobject = obj;
 1039         pg->uanon = anon;
 1040         pg->pg_flags = PG_BUSY|PG_CLEAN|PG_FAKE;
 1041         pg->pg_version++;
 1042         if (anon) {
 1043                 anon->an_page = pg;
 1044                 atomic_setbits_int(&pg->pg_flags, PQ_ANON);
 1045 #ifdef UBC
 1046                 uvm_pgcnt_anon++;
 1047 #endif
 1048         } else {
 1049                 if (obj)
 1050                         uvm_pageinsert(pg);
 1051         }
 1052 #if defined(UVM_PAGE_TRKOWN)
 1053         pg->owner_tag = NULL;
 1054 #endif
 1055         UVM_PAGE_OWN(pg, "new alloc");
 1056 
 1057         if (flags & UVM_PGA_ZERO) {
 1058                 /*
 1059                  * A zero'd page is not clean.  If we got a page not already
 1060                  * zero'd, then we have to zero it ourselves.
 1061                  */
 1062                 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
 1063                 if (zeroit)
 1064                         pmap_zero_page(pg);
 1065         }
 1066 
 1067         UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
 1068             (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
 1069         return(pg);
 1070 
 1071  fail:
 1072         uvm_unlock_fpageq(s);
 1073         UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
 1074         return (NULL);
 1075 }
 1076 
 1077 /*
 1078  * uvm_pagerealloc: reallocate a page from one object to another
 1079  *
 1080  * => both objects must be locked
 1081  */
 1082 
 1083 void
 1084 uvm_pagerealloc(pg, newobj, newoff)
 1085         struct vm_page *pg;
 1086         struct uvm_object *newobj;
 1087         voff_t newoff;
 1088 {
 1089 
 1090         UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
 1091 
 1092         /*
 1093          * remove it from the old object
 1094          */
 1095 
 1096         if (pg->uobject) {
 1097                 uvm_pageremove(pg);
 1098         }
 1099 
 1100         /*
 1101          * put it in the new object
 1102          */
 1103 
 1104         if (newobj) {
 1105                 pg->uobject = newobj;
 1106                 pg->offset = newoff;
 1107                 pg->pg_version++;
 1108                 uvm_pageinsert(pg);
 1109         }
 1110 }
 1111 
 1112 
 1113 /*
 1114  * uvm_pagefree: free page
 1115  *
 1116  * => erase page's identity (i.e. remove from hash/object)
 1117  * => put page on free list
 1118  * => caller must lock owning object (either anon or uvm_object)
 1119  * => caller must lock page queues
 1120  * => assumes all valid mappings of pg are gone
 1121  */
 1122 
 1123 void
 1124 uvm_pagefree(struct vm_page *pg)
 1125 {
 1126         int s;
 1127         int saved_loan_count = pg->loan_count;
 1128         UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
 1129 
 1130 #ifdef DEBUG
 1131         if (pg->uobject == (void *)0xdeadbeef &&
 1132             pg->uanon == (void *)0xdeadbeef) {
 1133                 panic("uvm_pagefree: freeing free page %p", pg);
 1134         }
 1135 #endif
 1136 
 1137         UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
 1138             (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
 1139 
 1140         /*
 1141          * if the page was an object page (and thus "TABLED"), remove it
 1142          * from the object.
 1143          */
 1144 
 1145         if (pg->pg_flags & PG_TABLED) {
 1146 
 1147                 /*
 1148                  * if the object page is on loan we are going to drop ownership.
 1149                  * it is possible that an anon will take over as owner for this
 1150                  * page later on.   the anon will want a !PG_CLEAN page so that
 1151                  * it knows it needs to allocate swap if it wants to page the 
 1152                  * page out. 
 1153                  */
 1154 
 1155                 /* in case an anon takes over */
 1156                 if (saved_loan_count)
 1157                         atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
 1158                 uvm_pageremove(pg);
 1159                 
 1160                 /*
 1161                  * if our page was on loan, then we just lost control over it
 1162                  * (in fact, if it was loaned to an anon, the anon may have
 1163                  * already taken over ownership of the page by now and thus
 1164                  * changed the loan_count [e.g. in uvmfault_anonget()]) we just 
 1165                  * return (when the last loan is dropped, then the page can be 
 1166                  * freed by whatever was holding the last loan).
 1167                  */
 1168 
 1169                 if (saved_loan_count) 
 1170                         return;
 1171         } else if (saved_loan_count && pg->uanon) {
 1172                 /*
 1173                  * if our page is owned by an anon and is loaned out to the
 1174                  * kernel then we just want to drop ownership and return.
 1175                  * the kernel must free the page when all its loans clear ...
 1176                  * note that the kernel can't change the loan status of our
 1177                  * page as long as we are holding PQ lock.
 1178                  */
 1179                 atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
 1180                 pg->uanon->an_page = NULL;
 1181                 pg->uanon = NULL;
 1182                 return;
 1183         }
 1184         KASSERT(saved_loan_count == 0);
 1185 
 1186         /*
 1187          * now remove the page from the queues
 1188          */
 1189 
 1190         if (pg->pg_flags & PQ_ACTIVE) {
 1191                 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
 1192                 atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
 1193                 uvmexp.active--;
 1194         }
 1195         if (pg->pg_flags & PQ_INACTIVE) {
 1196                 if (pg->pg_flags & PQ_SWAPBACKED)
 1197                         TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
 1198                 else
 1199                         TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
 1200                 atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
 1201                 uvmexp.inactive--;
 1202         }
 1203 
 1204         /*
 1205          * if the page was wired, unwire it now.
 1206          */
 1207 
 1208         if (pg->wire_count) {
 1209                 pg->wire_count = 0;
 1210                 uvmexp.wired--;
 1211         }
 1212         if (pg->uanon) {
 1213                 pg->uanon->an_page = NULL;
 1214 #ifdef UBC
 1215                 uvm_pgcnt_anon--;
 1216 #endif
 1217         }
 1218 
 1219         /*
 1220          * and put on free queue
 1221          */
 1222 
 1223         atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
 1224 
 1225         s = uvm_lock_fpageq();
 1226         TAILQ_INSERT_TAIL(&uvm.page_free[
 1227             uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
 1228         atomic_clearbits_int(&pg->pg_flags, PQ_MASK);
 1229         atomic_setbits_int(&pg->pg_flags, PQ_FREE);
 1230 #ifdef DEBUG
 1231         pg->uobject = (void *)0xdeadbeef;
 1232         pg->offset = 0xdeadbeef;
 1233         pg->uanon = (void *)0xdeadbeef;
 1234 #endif
 1235         uvmexp.free++;
 1236 
 1237         if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
 1238                 uvm.page_idle_zero = vm_page_zero_enable;
 1239 
 1240         uvm_unlock_fpageq(s);
 1241 }
 1242 
 1243 /*
 1244  * uvm_page_unbusy: unbusy an array of pages.
 1245  *
 1246  * => pages must either all belong to the same object, or all belong to anons.
 1247  * => if pages are object-owned, object must be locked.
 1248  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
 1249  */
 1250 
 1251 void
 1252 uvm_page_unbusy(pgs, npgs)
 1253         struct vm_page **pgs;
 1254         int npgs;
 1255 {
 1256         struct vm_page *pg;
 1257         struct uvm_object *uobj;
 1258         int i;
 1259         UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
 1260 
 1261         for (i = 0; i < npgs; i++) {
 1262                 pg = pgs[i];
 1263 
 1264                 if (pg == NULL || pg == PGO_DONTCARE) {
 1265                         continue;
 1266                 }
 1267                 if (pg->pg_flags & PG_WANTED) {
 1268                         wakeup(pg);
 1269                 }
 1270                 if (pg->pg_flags & PG_RELEASED) {
 1271                         UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
 1272                         uobj = pg->uobject;
 1273                         if (uobj != NULL) {
 1274                                 uobj->pgops->pgo_releasepg(pg, NULL);
 1275                         } else {
 1276                                 atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
 1277                                 UVM_PAGE_OWN(pg, NULL);
 1278                                 uvm_anfree(pg->uanon);
 1279                         }
 1280                 } else {
 1281                         UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
 1282                         atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
 1283                         UVM_PAGE_OWN(pg, NULL);
 1284                 }
 1285         }
 1286 }
 1287 
 1288 #if defined(UVM_PAGE_TRKOWN)
 1289 /*
 1290  * uvm_page_own: set or release page ownership
 1291  *
 1292  * => this is a debugging function that keeps track of who sets PG_BUSY
 1293  *      and where they do it.   it can be used to track down problems
 1294  *      such a process setting "PG_BUSY" and never releasing it.
 1295  * => page's object [if any] must be locked
 1296  * => if "tag" is NULL then we are releasing page ownership
 1297  */
 1298 void
 1299 uvm_page_own(pg, tag)
 1300         struct vm_page *pg;
 1301         char *tag;
 1302 {
 1303         /* gain ownership? */
 1304         if (tag) {
 1305                 if (pg->owner_tag) {
 1306                         printf("uvm_page_own: page %p already owned "
 1307                             "by proc %d [%s]\n", pg,
 1308                              pg->owner, pg->owner_tag);
 1309                         panic("uvm_page_own");
 1310                 }
 1311                 pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
 1312                 pg->owner_tag = tag;
 1313                 return;
 1314         }
 1315 
 1316         /* drop ownership */
 1317         if (pg->owner_tag == NULL) {
 1318                 printf("uvm_page_own: dropping ownership of an non-owned "
 1319                     "page (%p)\n", pg);
 1320                 panic("uvm_page_own");
 1321         }
 1322         pg->owner_tag = NULL;
 1323         return;
 1324 }
 1325 #endif
 1326 
 1327 /*
 1328  * uvm_pageidlezero: zero free pages while the system is idle.
 1329  *
 1330  * => we do at least one iteration per call, if we are below the target.
 1331  * => we loop until we either reach the target or whichqs indicates that
 1332  *      there is a process ready to run.
 1333  */
 1334 void
 1335 uvm_pageidlezero()
 1336 {
 1337         struct vm_page *pg;
 1338         struct pgfreelist *pgfl;
 1339         int free_list, s;
 1340         UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
 1341 
 1342         do {
 1343                 s = uvm_lock_fpageq();
 1344 
 1345                 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
 1346                         uvm.page_idle_zero = FALSE;
 1347                         uvm_unlock_fpageq(s);
 1348                         return;
 1349                 }
 1350 
 1351                 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
 1352                         pgfl = &uvm.page_free[free_list];
 1353                         if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
 1354                             PGFL_UNKNOWN])) != NULL)
 1355                                 break;
 1356                 }
 1357 
 1358                 if (pg == NULL) {
 1359                         /*
 1360                          * No non-zero'd pages; don't bother trying again
 1361                          * until we know we have non-zero'd pages free.
 1362                          */
 1363                         uvm.page_idle_zero = FALSE;
 1364                         uvm_unlock_fpageq(s);
 1365                         return;
 1366                 }
 1367 
 1368                 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
 1369                 uvmexp.free--;
 1370                 uvm_unlock_fpageq(s);
 1371 
 1372 #ifdef PMAP_PAGEIDLEZERO
 1373                 if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
 1374                         /*
 1375                          * The machine-dependent code detected some
 1376                          * reason for us to abort zeroing pages,
 1377                          * probably because there is a process now
 1378                          * ready to run.
 1379                          */
 1380                         s = uvm_lock_fpageq();
 1381                         TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
 1382                             pg, pageq);
 1383                         uvmexp.free++;
 1384                         uvmexp.zeroaborts++;
 1385                         uvm_unlock_fpageq(s);
 1386                         return;
 1387                 }
 1388 #else
 1389                 /*
 1390                  * XXX This will toast the cache unless the pmap_zero_page()
 1391                  * XXX implementation does uncached access.
 1392                  */
 1393                 pmap_zero_page(pg);
 1394 #endif
 1395                 atomic_setbits_int(&pg->pg_flags, PG_ZERO);
 1396 
 1397                 s = uvm_lock_fpageq();
 1398                 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
 1399                 uvmexp.free++;
 1400                 uvmexp.zeropages++;
 1401                 uvm_unlock_fpageq(s);
 1402         } while (sched_is_idle());
 1403 }

/* [<][>][^][v][top][bottom][index][help] */