This source file includes following definitions.
- fork_return
- sys_fork
- sys_vfork
- sys_rfork
- process_new
- fork1
- pidtaken
- proc_trampoline_mp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <dev/rndvar.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59
60 #include <sys/syscallargs.h>
61
62 #include "systrace.h"
63 #include <dev/systrace.h>
64
65 #include <uvm/uvm_extern.h>
66 #include <uvm/uvm_map.h>
67
68 int nprocs = 1;
69 int randompid;
70 pid_t lastpid;
71 struct forkstat forkstat;
72
73 void fork_return(void *);
74 int pidtaken(pid_t);
75
76 void process_new(struct proc *, struct proc *);
77
78 void
79 fork_return(void *arg)
80 {
81 struct proc *p = (struct proc *)arg;
82
83 if (p->p_flag & P_TRACED)
84 psignal(p, SIGTRAP);
85
86 child_return(p);
87 }
88
89
90 int
91 sys_fork(struct proc *p, void *v, register_t *retval)
92 {
93 int flags;
94
95 flags = FORK_FORK;
96 if (p->p_ptmask & PTRACE_FORK)
97 flags |= FORK_PTRACE;
98 return (fork1(p, SIGCHLD, flags, NULL, 0,
99 fork_return, NULL, retval, NULL));
100 }
101
102
103 int
104 sys_vfork(struct proc *p, void *v, register_t *retval)
105 {
106 return (fork1(p, SIGCHLD, FORK_VFORK|FORK_PPWAIT, NULL, 0, NULL,
107 NULL, retval, NULL));
108 }
109
110 int
111 sys_rfork(struct proc *p, void *v, register_t *retval)
112 {
113 struct sys_rfork_args
114
115 *uap = v;
116
117 int rforkflags;
118 int flags;
119
120 flags = FORK_RFORK;
121 rforkflags = SCARG(uap, flags);
122
123 if ((rforkflags & RFPROC) == 0)
124 return (EINVAL);
125
126 switch(rforkflags & (RFFDG|RFCFDG)) {
127 case (RFFDG|RFCFDG):
128 return EINVAL;
129 case RFCFDG:
130 flags |= FORK_CLEANFILES;
131 break;
132 case RFFDG:
133 break;
134 default:
135 flags |= FORK_SHAREFILES;
136 break;
137 }
138
139 if (rforkflags & RFNOWAIT)
140 flags |= FORK_NOZOMBIE;
141
142 if (rforkflags & RFMEM)
143 flags |= FORK_SHAREVM;
144 #ifdef RTHREADS
145 if (rforkflags & RFTHREAD)
146 flags |= FORK_THREAD;
147 #endif
148
149 return (fork1(p, SIGCHLD, flags, NULL, 0, NULL, NULL, retval, NULL));
150 }
151
152
153
154
155 void
156 process_new(struct proc *newproc, struct proc *parent)
157 {
158 struct process *pr;
159
160 pr = pool_get(&process_pool, PR_WAITOK);
161 pr->ps_mainproc = newproc;
162 TAILQ_INIT(&pr->ps_threads);
163 TAILQ_INSERT_TAIL(&pr->ps_threads, newproc, p_thr_link);
164 newproc->p_p = pr;
165 }
166
167
168 struct timeval fork_tfmrate = { 10, 0 };
169
170 int
171 fork1(struct proc *p1, int exitsig, int flags, void *stack, size_t stacksize,
172 void (*func)(void *), void *arg, register_t *retval,
173 struct proc **rnewprocp)
174 {
175 struct proc *p2;
176 uid_t uid;
177 struct vmspace *vm;
178 int count;
179 vaddr_t uaddr;
180 int s;
181 extern void endtsleep(void *);
182 extern void realitexpire(void *);
183
184
185
186
187
188
189
190 uid = p1->p_cred->p_ruid;
191 if ((nprocs >= maxproc - 5 && uid != 0) || nprocs >= maxproc) {
192 static struct timeval lasttfm;
193
194 if (ratecheck(&lasttfm, &fork_tfmrate))
195 tablefull("proc");
196 return (EAGAIN);
197 }
198 nprocs++;
199
200
201
202
203
204 count = chgproccnt(uid, 1);
205 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
206 (void)chgproccnt(uid, -1);
207 nprocs--;
208 return (EAGAIN);
209 }
210
211 uaddr = uvm_km_alloc1(kernel_map, USPACE, USPACE_ALIGN, 1);
212 if (uaddr == 0) {
213 chgproccnt(uid, -1);
214 nprocs--;
215 return (ENOMEM);
216 }
217
218
219
220
221
222
223 p2 = pool_get(&proc_pool, PR_WAITOK);
224
225 p2->p_stat = SIDL;
226 p2->p_exitsig = exitsig;
227 p2->p_forw = p2->p_back = NULL;
228
229 #ifdef RTHREADS
230 if (flags & FORK_THREAD) {
231 atomic_setbits_int(&p2->p_flag, P_THREAD);
232 p2->p_p = p1->p_p;
233 TAILQ_INSERT_TAIL(&p2->p_p->ps_threads, p2, p_thr_link);
234 } else {
235 process_new(p2, p1);
236 }
237 #else
238 process_new(p2, p1);
239 #endif
240
241
242
243
244
245
246 bzero(&p2->p_startzero,
247 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
248 bcopy(&p1->p_startcopy, &p2->p_startcopy,
249 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
250
251
252
253
254 timeout_set(&p2->p_sleep_to, endtsleep, p2);
255 timeout_set(&p2->p_realit_to, realitexpire, p2);
256
257 p2->p_cpu = p1->p_cpu;
258
259
260
261
262
263
264 p2->p_flag = 0;
265 p2->p_emul = p1->p_emul;
266 if (p1->p_flag & P_PROFIL)
267 startprofclock(p2);
268 atomic_setbits_int(&p2->p_flag, p1->p_flag & (P_SUGID | P_SUGIDEXEC));
269 if (flags & FORK_PTRACE)
270 atomic_setbits_int(&p2->p_flag, p1->p_flag & P_TRACED);
271 #ifdef RTHREADS
272 if (flags & FORK_THREAD) {
273
274 } else
275 #endif
276 {
277 p2->p_p->ps_cred = pool_get(&pcred_pool, PR_WAITOK);
278 bcopy(p1->p_p->ps_cred, p2->p_p->ps_cred, sizeof(*p2->p_p->ps_cred));
279 p2->p_p->ps_cred->p_refcnt = 1;
280 crhold(p1->p_ucred);
281 }
282
283
284 p2->p_textvp = p1->p_textvp;
285 if (p2->p_textvp)
286 VREF(p2->p_textvp);
287
288 if (flags & FORK_CLEANFILES)
289 p2->p_fd = fdinit(p1);
290 else if (flags & FORK_SHAREFILES)
291 p2->p_fd = fdshare(p1);
292 else
293 p2->p_fd = fdcopy(p1);
294
295
296
297
298
299
300
301 #ifdef RTHREADS
302 if (flags & FORK_THREAD) {
303
304 } else
305 #endif
306 {
307 if (p1->p_p->ps_limit->p_lflags & PL_SHAREMOD)
308 p2->p_p->ps_limit = limcopy(p1->p_p->ps_limit);
309 else {
310 p2->p_p->ps_limit = p1->p_p->ps_limit;
311 p2->p_p->ps_limit->p_refcnt++;
312 }
313 }
314
315 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
316 atomic_setbits_int(&p2->p_flag, P_CONTROLT);
317 if (flags & FORK_PPWAIT)
318 atomic_setbits_int(&p2->p_flag, P_PPWAIT);
319 p2->p_pptr = p1;
320 if (flags & FORK_NOZOMBIE)
321 atomic_setbits_int(&p2->p_flag, P_NOZOMBIE);
322 LIST_INIT(&p2->p_children);
323
324 #ifdef KTRACE
325
326
327
328
329 if (p1->p_traceflag & KTRFAC_INHERIT) {
330 p2->p_traceflag = p1->p_traceflag;
331 if ((p2->p_tracep = p1->p_tracep) != NULL)
332 VREF(p2->p_tracep);
333 }
334 #endif
335
336
337
338
339
340
341 scheduler_fork_hook(p1, p2);
342
343
344
345
346 if (flags & FORK_SIGHAND)
347 sigactsshare(p1, p2);
348 else
349 p2->p_sigacts = sigactsinit(p1);
350
351
352
353
354 if (p2->p_emul->e_proc_fork)
355 (*p2->p_emul->e_proc_fork)(p2, p1);
356
357 p2->p_addr = (struct user *)uaddr;
358
359
360
361
362
363 uvm_fork(p1, p2, ((flags & FORK_SHAREVM) ? TRUE : FALSE), stack,
364 stacksize, func ? func : child_return, arg ? arg : p2);
365
366 timeout_set(&p2->p_stats->p_virt_to, virttimer_trampoline, p2);
367 timeout_set(&p2->p_stats->p_prof_to, proftimer_trampoline, p2);
368
369 vm = p2->p_vmspace;
370
371 if (flags & FORK_FORK) {
372 forkstat.cntfork++;
373 forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
374 } else if (flags & FORK_VFORK) {
375 forkstat.cntvfork++;
376 forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
377 } else if (flags & FORK_RFORK) {
378 forkstat.cntrfork++;
379 forkstat.sizrfork += vm->vm_dsize + vm->vm_ssize;
380 } else {
381 forkstat.cntkthread++;
382 forkstat.sizkthread += vm->vm_dsize + vm->vm_ssize;
383 }
384
385
386 do {
387 lastpid = 1 + (randompid ? arc4random() : lastpid) % PID_MAX;
388 } while (pidtaken(lastpid));
389 p2->p_pid = lastpid;
390
391 LIST_INSERT_HEAD(&allproc, p2, p_list);
392 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
393 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
394 LIST_INSERT_AFTER(p1, p2, p_pglist);
395 if (p2->p_flag & P_TRACED) {
396 p2->p_oppid = p1->p_pid;
397 if (p2->p_pptr != p1->p_pptr)
398 proc_reparent(p2, p1->p_pptr);
399
400
401
402
403 if (flags & FORK_FORK) {
404 p2->p_ptstat = malloc(sizeof(*p2->p_ptstat),
405 M_SUBPROC, M_WAITOK);
406 p1->p_ptstat->pe_report_event = PTRACE_FORK;
407 p2->p_ptstat->pe_report_event = PTRACE_FORK;
408 p1->p_ptstat->pe_other_pid = p2->p_pid;
409 p2->p_ptstat->pe_other_pid = p1->p_pid;
410 }
411 }
412
413 #if NSYSTRACE > 0
414 if (ISSET(p1->p_flag, P_SYSTRACE))
415 systrace_fork(p1, p2);
416 #endif
417
418
419
420
421 SCHED_LOCK(s);
422 getmicrotime(&p2->p_stats->p_start);
423 p2->p_acflag = AFORK;
424 p2->p_stat = SRUN;
425 setrunqueue(p2);
426 SCHED_UNLOCK(s);
427
428
429
430
431 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
432
433
434
435
436 uvmexp.forks++;
437 if (flags & FORK_PPWAIT)
438 uvmexp.forks_ppwait++;
439 if (flags & FORK_SHAREVM)
440 uvmexp.forks_sharevm++;
441
442
443
444
445 if (rnewprocp != NULL)
446 *rnewprocp = p2;
447
448
449
450
451
452
453 if (flags & FORK_PPWAIT)
454 while (p2->p_flag & P_PPWAIT)
455 tsleep(p1, PWAIT, "ppwait", 0);
456
457
458
459
460 if ((flags & FORK_PTRACE) && (p1->p_flag & P_TRACED))
461 psignal(p1, SIGTRAP);
462
463
464
465
466
467 if (retval != NULL) {
468 retval[0] = p2->p_pid;
469 retval[1] = 0;
470 }
471 return (0);
472 }
473
474
475
476
477 int
478 pidtaken(pid_t pid)
479 {
480 struct proc *p;
481
482 if (pfind(pid) != NULL)
483 return (1);
484 if (pgfind(pid) != NULL)
485 return (1);
486 LIST_FOREACH(p, &zombproc, p_list)
487 if (p->p_pid == pid || p->p_pgid == pid)
488 return (1);
489 return (0);
490 }
491
492 #if defined(MULTIPROCESSOR)
493
494
495
496
497 void
498 proc_trampoline_mp(void)
499 {
500 struct proc *p;
501
502 p = curproc;
503
504 SCHED_ASSERT_UNLOCKED();
505 KERNEL_PROC_LOCK(p);
506 }
507 #endif