root/uvm/uvm_glue.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. uvm_kernacc
  2. uvm_chgkprot
  3. uvm_vslock
  4. uvm_vsunlock
  5. uvm_fork
  6. uvm_exit
  7. uvm_init_limits
  8. uvm_scheduler
  9. uvm_swapout_threads

    1 /*      $OpenBSD: uvm_glue.c,v 1.47 2007/05/26 20:26:51 pedro Exp $     */
    2 /*      $NetBSD: uvm_glue.c,v 1.44 2001/02/06 19:54:44 eeh Exp $        */
    3 
    4 /* 
    5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
    6  * Copyright (c) 1991, 1993, The Regents of the University of California.  
    7  *
    8  * All rights reserved.
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by Charles D. Cranor,
   24  *      Washington University, the University of California, Berkeley and 
   25  *      its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)vm_glue.c   8.6 (Berkeley) 1/5/94
   43  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
   44  *
   45  *
   46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   47  * All rights reserved.
   48  * 
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  * 
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  * 
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  * uvm_glue.c: glue functions
   72  */
   73 
   74 #include <sys/param.h>
   75 #include <sys/systm.h>
   76 #include <sys/proc.h>
   77 #include <sys/resourcevar.h>
   78 #include <sys/buf.h>
   79 #include <sys/user.h>
   80 #ifdef SYSVSHM
   81 #include <sys/shm.h>
   82 #endif
   83 #include <sys/sched.h>
   84 
   85 #include <uvm/uvm.h>
   86 
   87 #include <machine/cpu.h>
   88 
   89 /*
   90  * XXXCDC: do these really belong here?
   91  */
   92 
   93 int readbuffers = 0;            /* allow KGDB to read kern buffer pool */
   94                                 /* XXX: see uvm_kernacc */
   95 
   96 
   97 /*
   98  * uvm_kernacc: can the kernel access a region of memory
   99  *
  100  * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
  101  */
  102 
  103 boolean_t
  104 uvm_kernacc(addr, len, rw)
  105         caddr_t addr;
  106         size_t len;
  107         int rw;
  108 {
  109         boolean_t rv;
  110         vaddr_t saddr, eaddr;
  111         vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
  112 
  113         saddr = trunc_page((vaddr_t)addr);
  114         eaddr = round_page((vaddr_t)addr + len);
  115         vm_map_lock_read(kernel_map);
  116         rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
  117         vm_map_unlock_read(kernel_map);
  118 
  119         return(rv);
  120 }
  121 
  122 #ifdef KGDB
  123 /*
  124  * Change protections on kernel pages from addr to addr+len
  125  * (presumably so debugger can plant a breakpoint).
  126  *
  127  * We force the protection change at the pmap level.  If we were
  128  * to use vm_map_protect a change to allow writing would be lazily-
  129  * applied meaning we would still take a protection fault, something
  130  * we really don't want to do.  It would also fragment the kernel
  131  * map unnecessarily.  We cannot use pmap_protect since it also won't
  132  * enforce a write-enable request.  Using pmap_enter is the only way
  133  * we can ensure the change takes place properly.
  134  */
  135 void
  136 uvm_chgkprot(addr, len, rw)
  137         caddr_t addr;
  138         size_t len;
  139         int rw;
  140 {
  141         vm_prot_t prot;
  142         paddr_t pa;
  143         vaddr_t sva, eva;
  144 
  145         prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
  146         eva = round_page((vaddr_t)addr + len);
  147         for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
  148                 /*
  149                  * Extract physical address for the page.
  150                  * We use a cheezy hack to differentiate physical
  151                  * page 0 from an invalid mapping, not that it
  152                  * really matters...
  153                  */
  154                 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
  155                         panic("chgkprot: invalid page");
  156                 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
  157         }
  158         pmap_update(pmap_kernel());
  159 }
  160 #endif
  161 
  162 /*
  163  * uvm_vslock: wire user memory for I/O
  164  *
  165  * - called from physio and sys___sysctl
  166  * - XXXCDC: consider nuking this (or making it a macro?)
  167  */
  168 
  169 int
  170 uvm_vslock(p, addr, len, access_type)
  171         struct proc *p;
  172         caddr_t addr;
  173         size_t  len;
  174         vm_prot_t access_type;
  175 {
  176         vm_map_t map;
  177         vaddr_t start, end;
  178         int rv;
  179 
  180         map = &p->p_vmspace->vm_map;
  181         start = trunc_page((vaddr_t)addr);
  182         end = round_page((vaddr_t)addr + len);
  183         if (end <= start)
  184                 return (EINVAL);
  185 
  186         rv = uvm_fault_wire(map, start, end, access_type);
  187 
  188         return (rv);
  189 }
  190 
  191 /*
  192  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
  193  *
  194  * - called from physio and sys___sysctl
  195  * - XXXCDC: consider nuking this (or making it a macro?)
  196  */
  197 
  198 void
  199 uvm_vsunlock(p, addr, len)
  200         struct proc *p;
  201         caddr_t addr;
  202         size_t  len;
  203 {
  204         vaddr_t start, end;
  205 
  206         start = trunc_page((vaddr_t)addr);
  207         end = round_page((vaddr_t)addr + len);
  208         if (end <= start)
  209                 return;
  210 
  211         uvm_fault_unwire(&p->p_vmspace->vm_map, start, end);
  212 }
  213 
  214 /*
  215  * uvm_fork: fork a virtual address space
  216  *
  217  * - the address space is copied as per parent map's inherit values
  218  * - a new "user" structure is allocated for the child process
  219  *      [filled in by MD layer...]
  220  * - if specified, the child gets a new user stack described by
  221  *      stack and stacksize
  222  * - NOTE: the kernel stack may be at a different location in the child
  223  *      process, and thus addresses of automatic variables may be invalid
  224  *      after cpu_fork returns in the child process.  We do nothing here
  225  *      after cpu_fork returns.
  226  * - XXXCDC: we need a way for this to return a failure value rather
  227  *   than just hang
  228  */
  229 void
  230 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
  231         struct proc *p1, *p2;
  232         boolean_t shared;
  233         void *stack;
  234         size_t stacksize;
  235         void (*func)(void *);
  236         void *arg;
  237 {
  238         struct user *up = p2->p_addr;
  239 
  240         if (shared == TRUE) {
  241                 p2->p_vmspace = NULL;
  242                 uvmspace_share(p1, p2);                 /* share vmspace */
  243         } else
  244                 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
  245 
  246 #ifdef PMAP_UAREA
  247         /* Tell the pmap this is a u-area mapping */
  248         PMAP_UAREA((vaddr_t)up);
  249 #endif
  250 
  251         /*
  252          * p_stats currently points at a field in the user struct.  Copy
  253          * parts of p_stats, and zero out the rest.
  254          */
  255         p2->p_stats = &up->u_stats;
  256         memset(&up->u_stats.pstat_startzero, 0,
  257                ((caddr_t)&up->u_stats.pstat_endzero -
  258                 (caddr_t)&up->u_stats.pstat_startzero));
  259         memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
  260                ((caddr_t)&up->u_stats.pstat_endcopy -
  261                 (caddr_t)&up->u_stats.pstat_startcopy));
  262         
  263         /*
  264          * cpu_fork() copy and update the pcb, and make the child ready
  265          * to run.  If this is a normal user fork, the child will exit
  266          * directly to user mode via child_return() on its first time
  267          * slice and will not return here.  If this is a kernel thread,
  268          * the specified entry point will be executed.
  269          */
  270         cpu_fork(p1, p2, stack, stacksize, func, arg);
  271 }
  272 
  273 /*
  274  * uvm_exit: exit a virtual address space
  275  *
  276  * - the process passed to us is a dead (pre-zombie) process; we
  277  *   are running on a different context now (the reaper).
  278  * - we must run in a separate thread because freeing the vmspace
  279  *   of the dead process may block.
  280  */
  281 void
  282 uvm_exit(struct proc *p)
  283 {
  284         uvmspace_free(p->p_vmspace);
  285         uvm_km_free(kernel_map, (vaddr_t)p->p_addr, USPACE);
  286         p->p_addr = NULL;
  287 }
  288 
  289 /*
  290  * uvm_init_limit: init per-process VM limits
  291  *
  292  * - called for process 0 and then inherited by all others.
  293  */
  294 void
  295 uvm_init_limits(struct proc *p)
  296 {
  297 
  298         /*
  299          * Set up the initial limits on process VM.  Set the maximum
  300          * resident set size to be all of (reasonably) available memory.
  301          * This causes any single, large process to start random page
  302          * replacement once it fills memory.
  303          */
  304 
  305         p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
  306         p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
  307         p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
  308         p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
  309         p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
  310 }
  311 
  312 #ifdef DEBUG
  313 int     enableswap = 1;
  314 int     swapdebug = 0;
  315 #define SDB_FOLLOW      1
  316 #define SDB_SWAPIN      2
  317 #define SDB_SWAPOUT     4
  318 #endif
  319 
  320 /*
  321  * uvm_scheduler: process zero main loop
  322  *
  323  * - if not enough memory, wake the pagedaemon and let it clear space.
  324  */
  325 
  326 void
  327 uvm_scheduler(void)
  328 {
  329         /*
  330          * Nothing to do, back to sleep
  331          */
  332         while (1)
  333                 tsleep(&proc0, PVM, "scheduler", 0);
  334 }
  335 
  336 /*
  337  * swappable: is process "p" swappable?
  338  */
  339 
  340 #define swappable(p) (((p)->p_flag & (P_SYSTEM | P_WEXIT)) == 0)
  341 
  342 /*
  343  * swapout_threads: find threads that can be swapped
  344  *
  345  * - called by the pagedaemon
  346  * - try and swap at least one processs
  347  * - processes that are sleeping or stopped for maxslp or more seconds
  348  *   are swapped... otherwise the longest-sleeping or stopped process
  349  *   is swapped, otherwise the longest resident process...
  350  */
  351 void
  352 uvm_swapout_threads(void)
  353 {
  354         struct proc *p;
  355         struct proc *outp, *outp2;
  356         int outpri, outpri2;
  357         int didswap = 0;
  358         extern int maxslp; 
  359         /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
  360 
  361 #ifdef DEBUG
  362         if (!enableswap)
  363                 return;
  364 #endif
  365 
  366         /*
  367          * outp/outpri  : stop/sleep process with largest sleeptime < maxslp
  368          * outp2/outpri2: the longest resident process (its swap time)
  369          */
  370         outp = outp2 = NULL;
  371         outpri = outpri2 = 0;
  372         LIST_FOREACH(p, &allproc, p_list) {
  373                 if (!swappable(p))
  374                         continue;
  375                 switch (p->p_stat) {
  376                 case SRUN:
  377                         if (p->p_swtime > outpri2) {
  378                                 outp2 = p;
  379                                 outpri2 = p->p_swtime;
  380                         }
  381                         continue;
  382                         
  383                 case SSLEEP:
  384                 case SSTOP:
  385                         if (p->p_slptime >= maxslp) {
  386                                 pmap_collect(p->p_vmspace->vm_map.pmap);
  387                                 didswap++;
  388                         } else if (p->p_slptime > outpri) {
  389                                 outp = p;
  390                                 outpri = p->p_slptime;
  391                         }
  392                         continue;
  393                 }
  394         }
  395 
  396         /*
  397          * If we didn't get rid of any real duds, toss out the next most
  398          * likely sleeping/stopped or running candidate.  We only do this
  399          * if we are real low on memory since we don't gain much by doing
  400          * it.
  401          */
  402         if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
  403                 if ((p = outp) == NULL)
  404                         p = outp2;
  405 #ifdef DEBUG
  406                 if (swapdebug & SDB_SWAPOUT)
  407                         printf("swapout_threads: no duds, try procp %p\n", p);
  408 #endif
  409                 if (p)
  410                         pmap_collect(p->p_vmspace->vm_map.pmap);
  411         }
  412 }

/* [<][>][^][v][top][bottom][index][help] */