root/kern/sched_bsd.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. scheduler_start
  2. roundrobin
  3. schedcpu
  4. updatepri
  5. sched_unlock_idle
  6. sched_lock_idle
  7. yield
  8. preempt
  9. mi_switch
  10. rqinit
  11. resched_proc
  12. setrunnable
  13. resetpriority
  14. schedclock

    1 /*      $OpenBSD: sched_bsd.c,v 1.12 2007/05/18 16:10:15 art Exp $      */
    2 /*      $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
    3 
    4 /*-
    5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  * (c) UNIX System Laboratories, Inc.
    8  * All or some portions of this file are derived from material licensed
    9  * to the University of California by American Telephone and Telegraph
   10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   11  * the permission of UNIX System Laboratories, Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      @(#)kern_synch.c        8.6 (Berkeley) 1/21/94
   38  */
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/proc.h>
   43 #include <sys/kernel.h>
   44 #include <sys/buf.h>
   45 #include <sys/signalvar.h>
   46 #include <sys/resourcevar.h>
   47 #include <uvm/uvm_extern.h>
   48 #include <sys/sched.h>
   49 #include <sys/timeout.h>
   50 
   51 #ifdef KTRACE
   52 #include <sys/ktrace.h>
   53 #endif
   54 
   55 #include <machine/cpu.h>
   56 
   57 int     lbolt;                  /* once a second sleep address */
   58 int     rrticks_init;           /* # of hardclock ticks per roundrobin() */
   59 
   60 int whichqs;                    /* Bit mask summary of non-empty Q's. */
   61 struct prochd qs[NQS];
   62 
   63 struct SIMPLELOCK sched_lock;
   64 
   65 void scheduler_start(void);
   66 
   67 void roundrobin(struct cpu_info *);
   68 void schedcpu(void *);
   69 void updatepri(struct proc *);
   70 void endtsleep(void *);
   71 
   72 void
   73 scheduler_start(void)
   74 {
   75         static struct timeout schedcpu_to;
   76 
   77         /*
   78          * We avoid polluting the global namespace by keeping the scheduler
   79          * timeouts static in this function.
   80          * We setup the timeouts here and kick schedcpu and roundrobin once to
   81          * make them do their job.
   82          */
   83 
   84         timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
   85 
   86         rrticks_init = hz / 10;
   87         schedcpu(&schedcpu_to);
   88 }
   89 
   90 /*
   91  * Force switch among equal priority processes every 100ms.
   92  */
   93 /* ARGSUSED */
   94 void
   95 roundrobin(struct cpu_info *ci)
   96 {
   97         struct schedstate_percpu *spc = &ci->ci_schedstate;
   98         int s;
   99 
  100         spc->spc_rrticks = rrticks_init;
  101 
  102         if (curproc != NULL) {
  103                 s = splstatclock();
  104                 if (spc->spc_schedflags & SPCF_SEENRR) {
  105                         /*
  106                          * The process has already been through a roundrobin
  107                          * without switching and may be hogging the CPU.
  108                          * Indicate that the process should yield.
  109                          */
  110                         spc->spc_schedflags |= SPCF_SHOULDYIELD;
  111                 } else {
  112                         spc->spc_schedflags |= SPCF_SEENRR;
  113                 }
  114                 splx(s);
  115         }
  116 
  117         need_resched(curcpu());
  118 }
  119 
  120 /*
  121  * Constants for digital decay and forget:
  122  *      90% of (p_estcpu) usage in 5 * loadav time
  123  *      95% of (p_pctcpu) usage in 60 seconds (load insensitive)
  124  *          Note that, as ps(1) mentions, this can let percentages
  125  *          total over 100% (I've seen 137.9% for 3 processes).
  126  *
  127  * Note that hardclock updates p_estcpu and p_cpticks independently.
  128  *
  129  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
  130  * That is, the system wants to compute a value of decay such
  131  * that the following for loop:
  132  *      for (i = 0; i < (5 * loadavg); i++)
  133  *              p_estcpu *= decay;
  134  * will compute
  135  *      p_estcpu *= 0.1;
  136  * for all values of loadavg:
  137  *
  138  * Mathematically this loop can be expressed by saying:
  139  *      decay ** (5 * loadavg) ~= .1
  140  *
  141  * The system computes decay as:
  142  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  143  *
  144  * We wish to prove that the system's computation of decay
  145  * will always fulfill the equation:
  146  *      decay ** (5 * loadavg) ~= .1
  147  *
  148  * If we compute b as:
  149  *      b = 2 * loadavg
  150  * then
  151  *      decay = b / (b + 1)
  152  *
  153  * We now need to prove two things:
  154  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  155  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  156  *      
  157  * Facts:
  158  *         For x close to zero, exp(x) =~ 1 + x, since
  159  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  160  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  161  *         For x close to zero, ln(1+x) =~ x, since
  162  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  163  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  164  *         ln(.1) =~ -2.30
  165  *
  166  * Proof of (1):
  167  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  168  *      solving for factor,
  169  *      ln(factor) =~ (-2.30/5*loadav), or
  170  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  171  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  172  *
  173  * Proof of (2):
  174  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  175  *      solving for power,
  176  *      power*ln(b/(b+1)) =~ -2.30, or
  177  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  178  *
  179  * Actual power values for the implemented algorithm are as follows:
  180  *      loadav: 1       2       3       4
  181  *      power:  5.68    10.32   14.94   19.55
  182  */
  183 
  184 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  185 #define loadfactor(loadav)      (2 * (loadav))
  186 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  187 
  188 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  189 fixpt_t ccpu = 0.95122942450071400909 * FSCALE;         /* exp(-1/20) */
  190 
  191 /*
  192  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  193  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  194  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  195  *
  196  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  197  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  198  *
  199  * If you don't want to bother with the faster/more-accurate formula, you
  200  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  201  * (more general) method of calculating the %age of CPU used by a process.
  202  */
  203 #define CCPU_SHIFT      11
  204 
  205 /*
  206  * Recompute process priorities, every hz ticks.
  207  */
  208 /* ARGSUSED */
  209 void
  210 schedcpu(void *arg)
  211 {
  212         struct timeout *to = (struct timeout *)arg;
  213         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  214         struct proc *p;
  215         int s;
  216         unsigned int newcpu;
  217         int phz;
  218 
  219         /*
  220          * If we have a statistics clock, use that to calculate CPU
  221          * time, otherwise revert to using the profiling clock (which,
  222          * in turn, defaults to hz if there is no separate profiling
  223          * clock available)
  224          */
  225         phz = stathz ? stathz : profhz;
  226         KASSERT(phz);
  227 
  228         for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
  229                 /*
  230                  * Increment time in/out of memory and sleep time
  231                  * (if sleeping).  We ignore overflow; with 16-bit int's
  232                  * (remember them?) overflow takes 45 days.
  233                  */
  234                 p->p_swtime++;
  235                 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
  236                         p->p_slptime++;
  237                 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
  238                 /*
  239                  * If the process has slept the entire second,
  240                  * stop recalculating its priority until it wakes up.
  241                  */
  242                 if (p->p_slptime > 1)
  243                         continue;
  244                 SCHED_LOCK(s);
  245                 /*
  246                  * p_pctcpu is only for ps.
  247                  */
  248 #if     (FSHIFT >= CCPU_SHIFT)
  249                 p->p_pctcpu += (phz == 100)?
  250                         ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
  251                         100 * (((fixpt_t) p->p_cpticks)
  252                                 << (FSHIFT - CCPU_SHIFT)) / phz;
  253 #else
  254                 p->p_pctcpu += ((FSCALE - ccpu) *
  255                         (p->p_cpticks * FSCALE / phz)) >> FSHIFT;
  256 #endif
  257                 p->p_cpticks = 0;
  258                 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
  259                 p->p_estcpu = newcpu;
  260                 resetpriority(p);
  261                 if (p->p_priority >= PUSER) {
  262                         if ((p != curproc) &&
  263                             p->p_stat == SRUN &&
  264                             (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
  265                                 remrunqueue(p);
  266                                 p->p_priority = p->p_usrpri;
  267                                 setrunqueue(p);
  268                         } else
  269                                 p->p_priority = p->p_usrpri;
  270                 }
  271                 SCHED_UNLOCK(s);
  272         }
  273         uvm_meter();
  274         wakeup(&lbolt);
  275         timeout_add(to, hz);
  276 }
  277 
  278 /*
  279  * Recalculate the priority of a process after it has slept for a while.
  280  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
  281  * least six times the loadfactor will decay p_estcpu to zero.
  282  */
  283 void
  284 updatepri(struct proc *p)
  285 {
  286         unsigned int newcpu = p->p_estcpu;
  287         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  288 
  289         SCHED_ASSERT_LOCKED();
  290 
  291         if (p->p_slptime > 5 * loadfac)
  292                 p->p_estcpu = 0;
  293         else {
  294                 p->p_slptime--; /* the first time was done in schedcpu */
  295                 while (newcpu && --p->p_slptime)
  296                         newcpu = (int) decay_cpu(loadfac, newcpu);
  297                 p->p_estcpu = newcpu;
  298         }
  299         resetpriority(p);
  300 }
  301 
  302 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
  303 void
  304 sched_unlock_idle(void)
  305 {
  306         SIMPLE_UNLOCK(&sched_lock);
  307 }
  308 
  309 void
  310 sched_lock_idle(void)
  311 {
  312         SIMPLE_LOCK(&sched_lock);
  313 }
  314 #endif /* MULTIPROCESSOR || LOCKDEBUG */
  315 
  316 /*
  317  * General yield call.  Puts the current process back on its run queue and
  318  * performs a voluntary context switch.
  319  */
  320 void
  321 yield(void)
  322 {
  323         struct proc *p = curproc;
  324         int s;
  325 
  326         SCHED_LOCK(s);
  327         p->p_priority = p->p_usrpri;
  328         p->p_stat = SRUN;
  329         setrunqueue(p);
  330         p->p_stats->p_ru.ru_nvcsw++;
  331         mi_switch();
  332         SCHED_UNLOCK(s);
  333 }
  334 
  335 /*
  336  * General preemption call.  Puts the current process back on its run queue
  337  * and performs an involuntary context switch.  If a process is supplied,
  338  * we switch to that process.  Otherwise, we use the normal process selection
  339  * criteria.
  340  */
  341 void
  342 preempt(struct proc *newp)
  343 {
  344         struct proc *p = curproc;
  345         int s;
  346 
  347         /*
  348          * XXX Switching to a specific process is not supported yet.
  349          */
  350         if (newp != NULL)
  351                 panic("preempt: cpu_preempt not yet implemented");
  352 
  353         SCHED_LOCK(s);
  354         p->p_priority = p->p_usrpri;
  355         p->p_stat = SRUN;
  356         setrunqueue(p);
  357         p->p_stats->p_ru.ru_nivcsw++;
  358         mi_switch();
  359         SCHED_UNLOCK(s);
  360 }
  361 
  362 
  363 /*
  364  * Must be called at splstatclock() or higher.
  365  */
  366 void
  367 mi_switch(void)
  368 {
  369         struct proc *p = curproc;       /* XXX */
  370         struct rlimit *rlim;
  371         struct timeval tv;
  372 #if defined(MULTIPROCESSOR)
  373         int hold_count;
  374         int sched_count;
  375 #endif
  376         struct schedstate_percpu *spc = &p->p_cpu->ci_schedstate;
  377 
  378         SCHED_ASSERT_LOCKED();
  379 
  380 #if defined(MULTIPROCESSOR)
  381         /*
  382          * Release the kernel_lock, as we are about to yield the CPU.
  383          * The scheduler lock is still held until cpu_switch()
  384          * selects a new process and removes it from the run queue.
  385          */
  386         sched_count = __mp_release_all_but_one(&sched_lock);
  387         if (p->p_flag & P_BIGLOCK)
  388                 hold_count = __mp_release_all(&kernel_lock);
  389 #endif
  390 
  391         /*
  392          * Compute the amount of time during which the current
  393          * process was running, and add that to its total so far.
  394          * XXX - use microuptime here to avoid strangeness.
  395          */
  396         microuptime(&tv);
  397         if (timercmp(&tv, &spc->spc_runtime, <)) {
  398 #if 0
  399                 printf("uptime is not monotonic! "
  400                     "tv=%lu.%06lu, runtime=%lu.%06lu\n",
  401                     tv.tv_sec, tv.tv_usec, spc->spc_runtime.tv_sec,
  402                     spc->spc_runtime.tv_usec);
  403 #endif
  404         } else {
  405                 timersub(&tv, &spc->spc_runtime, &tv);
  406                 timeradd(&p->p_rtime, &tv, &p->p_rtime);
  407         }
  408 
  409         /*
  410          * Check if the process exceeds its cpu resource allocation.
  411          * If over max, kill it.
  412          */
  413         rlim = &p->p_rlimit[RLIMIT_CPU];
  414         if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_cur) {
  415                 if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_max) {
  416                         psignal(p, SIGKILL);
  417                 } else {
  418                         psignal(p, SIGXCPU);
  419                         if (rlim->rlim_cur < rlim->rlim_max)
  420                                 rlim->rlim_cur += 5;
  421                 }
  422         }
  423 
  424         /*
  425          * Process is about to yield the CPU; clear the appropriate
  426          * scheduling flags.
  427          */
  428         spc->spc_schedflags &= ~SPCF_SWITCHCLEAR;
  429 
  430         /*
  431          * Pick a new current process and record its start time.
  432          */
  433         uvmexp.swtch++;
  434         cpu_switch(p);
  435 
  436         /*
  437          * Make sure that MD code released the scheduler lock before
  438          * resuming us.
  439          */
  440         SCHED_ASSERT_UNLOCKED();
  441 
  442         /*
  443          * We're running again; record our new start time.  We might
  444          * be running on a new CPU now, so don't use the cache'd
  445          * schedstate_percpu pointer.
  446          */
  447         KDASSERT(p->p_cpu != NULL);
  448         KDASSERT(p->p_cpu == curcpu());
  449         microuptime(&p->p_cpu->ci_schedstate.spc_runtime);
  450 
  451 #if defined(MULTIPROCESSOR)
  452         /*
  453          * Reacquire the kernel_lock now.  We do this after we've
  454          * released the scheduler lock to avoid deadlock, and before
  455          * we reacquire the interlock and the scheduler lock.
  456          */
  457         if (p->p_flag & P_BIGLOCK)
  458                 __mp_acquire_count(&kernel_lock, hold_count);
  459         __mp_acquire_count(&sched_lock, sched_count + 1);
  460 #endif
  461 }
  462 
  463 /*
  464  * Initialize the (doubly-linked) run queues
  465  * to be empty.
  466  */
  467 void
  468 rqinit(void)
  469 {
  470         int i;
  471 
  472         for (i = 0; i < NQS; i++)
  473                 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
  474         SIMPLE_LOCK_INIT(&sched_lock);
  475 }
  476 
  477 static __inline void
  478 resched_proc(struct proc *p, u_char pri)
  479 {
  480         struct cpu_info *ci;
  481 
  482         /*
  483          * XXXSMP
  484          * Since p->p_cpu persists across a context switch,
  485          * this gives us *very weak* processor affinity, in
  486          * that we notify the CPU on which the process last
  487          * ran that it should try to switch.
  488          *
  489          * This does not guarantee that the process will run on
  490          * that processor next, because another processor might
  491          * grab it the next time it performs a context switch.
  492          *
  493          * This also does not handle the case where its last
  494          * CPU is running a higher-priority process, but every
  495          * other CPU is running a lower-priority process.  There
  496          * are ways to handle this situation, but they're not
  497          * currently very pretty, and we also need to weigh the
  498          * cost of moving a process from one CPU to another.
  499          *
  500          * XXXSMP
  501          * There is also the issue of locking the other CPU's
  502          * sched state, which we currently do not do.
  503          */
  504         ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu();
  505         if (pri < ci->ci_schedstate.spc_curpriority)
  506                 need_resched(ci);
  507 }
  508 
  509 /*
  510  * Change process state to be runnable,
  511  * placing it on the run queue if it is in memory,
  512  * and awakening the swapper if it isn't in memory.
  513  */
  514 void
  515 setrunnable(struct proc *p)
  516 {
  517         SCHED_ASSERT_LOCKED();
  518 
  519         switch (p->p_stat) {
  520         case 0:
  521         case SRUN:
  522         case SONPROC:
  523         case SZOMB:
  524         case SDEAD:
  525         default:
  526                 panic("setrunnable");
  527         case SSTOP:
  528                 /*
  529                  * If we're being traced (possibly because someone attached us
  530                  * while we were stopped), check for a signal from the debugger.
  531                  */
  532                 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
  533                         atomic_setbits_int(&p->p_siglist, sigmask(p->p_xstat));
  534         case SSLEEP:
  535                 unsleep(p);             /* e.g. when sending signals */
  536                 break;
  537         case SIDL:
  538                 break;
  539         }
  540         p->p_stat = SRUN;
  541         setrunqueue(p);
  542         if (p->p_slptime > 1)
  543                 updatepri(p);
  544         p->p_slptime = 0;
  545         resched_proc(p, p->p_priority);
  546 }
  547 
  548 /*
  549  * Compute the priority of a process when running in user mode.
  550  * Arrange to reschedule if the resulting priority is better
  551  * than that of the current process.
  552  */
  553 void
  554 resetpriority(struct proc *p)
  555 {
  556         unsigned int newpriority;
  557 
  558         SCHED_ASSERT_LOCKED();
  559 
  560         newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
  561         newpriority = min(newpriority, MAXPRI);
  562         p->p_usrpri = newpriority;
  563         resched_proc(p, p->p_usrpri);
  564 }
  565 
  566 /*
  567  * We adjust the priority of the current process.  The priority of a process
  568  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
  569  * is increased here.  The formula for computing priorities (in kern_synch.c)
  570  * will compute a different value each time p_estcpu increases. This can
  571  * cause a switch, but unless the priority crosses a PPQ boundary the actual
  572  * queue will not change.  The cpu usage estimator ramps up quite quickly
  573  * when the process is running (linearly), and decays away exponentially, at
  574  * a rate which is proportionally slower when the system is busy.  The basic
  575  * principle is that the system will 90% forget that the process used a lot
  576  * of CPU time in 5 * loadav seconds.  This causes the system to favor
  577  * processes which haven't run much recently, and to round-robin among other
  578  * processes.
  579  */
  580 
  581 void
  582 schedclock(struct proc *p)
  583 {
  584         int s;
  585 
  586         SCHED_LOCK(s);
  587         p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
  588         resetpriority(p);
  589         if (p->p_priority >= PUSER)
  590                 p->p_priority = p->p_usrpri;
  591         SCHED_UNLOCK(s);
  592 }

/* [<][>][^][v][top][bottom][index][help] */