1 /* $OpenBSD: sched_bsd.c,v 1.12 2007/05/18 16:10:15 art Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/buf.h> 45 #include <sys/signalvar.h> 46 #include <sys/resourcevar.h> 47 #include <uvm/uvm_extern.h> 48 #include <sys/sched.h> 49 #include <sys/timeout.h> 50 51 #ifdef KTRACE 52 #include <sys/ktrace.h> 53 #endif 54 55 #include <machine/cpu.h> 56 57 int lbolt; /* once a second sleep address */ 58 int rrticks_init; /* # of hardclock ticks per roundrobin() */ 59 60 int whichqs; /* Bit mask summary of non-empty Q's. */ 61 struct prochd qs[NQS]; 62 63 struct SIMPLELOCK sched_lock; 64 65 void scheduler_start(void); 66 67 void roundrobin(struct cpu_info *); 68 void schedcpu(void *); 69 void updatepri(struct proc *); 70 void endtsleep(void *); 71 72 void 73 scheduler_start(void) 74 { 75 static struct timeout schedcpu_to; 76 77 /* 78 * We avoid polluting the global namespace by keeping the scheduler 79 * timeouts static in this function. 80 * We setup the timeouts here and kick schedcpu and roundrobin once to 81 * make them do their job. 82 */ 83 84 timeout_set(&schedcpu_to, schedcpu, &schedcpu_to); 85 86 rrticks_init = hz / 10; 87 schedcpu(&schedcpu_to); 88 } 89 90 /* 91 * Force switch among equal priority processes every 100ms. 92 */ 93 /* ARGSUSED */ 94 void 95 roundrobin(struct cpu_info *ci) 96 { 97 struct schedstate_percpu *spc = &ci->ci_schedstate; 98 int s; 99 100 spc->spc_rrticks = rrticks_init; 101 102 if (curproc != NULL) { 103 s = splstatclock(); 104 if (spc->spc_schedflags & SPCF_SEENRR) { 105 /* 106 * The process has already been through a roundrobin 107 * without switching and may be hogging the CPU. 108 * Indicate that the process should yield. 109 */ 110 spc->spc_schedflags |= SPCF_SHOULDYIELD; 111 } else { 112 spc->spc_schedflags |= SPCF_SEENRR; 113 } 114 splx(s); 115 } 116 117 need_resched(curcpu()); 118 } 119 120 /* 121 * Constants for digital decay and forget: 122 * 90% of (p_estcpu) usage in 5 * loadav time 123 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 124 * Note that, as ps(1) mentions, this can let percentages 125 * total over 100% (I've seen 137.9% for 3 processes). 126 * 127 * Note that hardclock updates p_estcpu and p_cpticks independently. 128 * 129 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 130 * That is, the system wants to compute a value of decay such 131 * that the following for loop: 132 * for (i = 0; i < (5 * loadavg); i++) 133 * p_estcpu *= decay; 134 * will compute 135 * p_estcpu *= 0.1; 136 * for all values of loadavg: 137 * 138 * Mathematically this loop can be expressed by saying: 139 * decay ** (5 * loadavg) ~= .1 140 * 141 * The system computes decay as: 142 * decay = (2 * loadavg) / (2 * loadavg + 1) 143 * 144 * We wish to prove that the system's computation of decay 145 * will always fulfill the equation: 146 * decay ** (5 * loadavg) ~= .1 147 * 148 * If we compute b as: 149 * b = 2 * loadavg 150 * then 151 * decay = b / (b + 1) 152 * 153 * We now need to prove two things: 154 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 155 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 156 * 157 * Facts: 158 * For x close to zero, exp(x) =~ 1 + x, since 159 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 160 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 161 * For x close to zero, ln(1+x) =~ x, since 162 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 163 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 164 * ln(.1) =~ -2.30 165 * 166 * Proof of (1): 167 * Solve (factor)**(power) =~ .1 given power (5*loadav): 168 * solving for factor, 169 * ln(factor) =~ (-2.30/5*loadav), or 170 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 171 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 172 * 173 * Proof of (2): 174 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 175 * solving for power, 176 * power*ln(b/(b+1)) =~ -2.30, or 177 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 178 * 179 * Actual power values for the implemented algorithm are as follows: 180 * loadav: 1 2 3 4 181 * power: 5.68 10.32 14.94 19.55 182 */ 183 184 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 185 #define loadfactor(loadav) (2 * (loadav)) 186 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 187 188 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 189 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 190 191 /* 192 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 193 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 194 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 195 * 196 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 197 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 198 * 199 * If you don't want to bother with the faster/more-accurate formula, you 200 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 201 * (more general) method of calculating the %age of CPU used by a process. 202 */ 203 #define CCPU_SHIFT 11 204 205 /* 206 * Recompute process priorities, every hz ticks. 207 */ 208 /* ARGSUSED */ 209 void 210 schedcpu(void *arg) 211 { 212 struct timeout *to = (struct timeout *)arg; 213 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 214 struct proc *p; 215 int s; 216 unsigned int newcpu; 217 int phz; 218 219 /* 220 * If we have a statistics clock, use that to calculate CPU 221 * time, otherwise revert to using the profiling clock (which, 222 * in turn, defaults to hz if there is no separate profiling 223 * clock available) 224 */ 225 phz = stathz ? stathz : profhz; 226 KASSERT(phz); 227 228 for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) { 229 /* 230 * Increment time in/out of memory and sleep time 231 * (if sleeping). We ignore overflow; with 16-bit int's 232 * (remember them?) overflow takes 45 days. 233 */ 234 p->p_swtime++; 235 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 236 p->p_slptime++; 237 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 238 /* 239 * If the process has slept the entire second, 240 * stop recalculating its priority until it wakes up. 241 */ 242 if (p->p_slptime > 1) 243 continue; 244 SCHED_LOCK(s); 245 /* 246 * p_pctcpu is only for ps. 247 */ 248 #if (FSHIFT >= CCPU_SHIFT) 249 p->p_pctcpu += (phz == 100)? 250 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 251 100 * (((fixpt_t) p->p_cpticks) 252 << (FSHIFT - CCPU_SHIFT)) / phz; 253 #else 254 p->p_pctcpu += ((FSCALE - ccpu) * 255 (p->p_cpticks * FSCALE / phz)) >> FSHIFT; 256 #endif 257 p->p_cpticks = 0; 258 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu); 259 p->p_estcpu = newcpu; 260 resetpriority(p); 261 if (p->p_priority >= PUSER) { 262 if ((p != curproc) && 263 p->p_stat == SRUN && 264 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 265 remrunqueue(p); 266 p->p_priority = p->p_usrpri; 267 setrunqueue(p); 268 } else 269 p->p_priority = p->p_usrpri; 270 } 271 SCHED_UNLOCK(s); 272 } 273 uvm_meter(); 274 wakeup(&lbolt); 275 timeout_add(to, hz); 276 } 277 278 /* 279 * Recalculate the priority of a process after it has slept for a while. 280 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 281 * least six times the loadfactor will decay p_estcpu to zero. 282 */ 283 void 284 updatepri(struct proc *p) 285 { 286 unsigned int newcpu = p->p_estcpu; 287 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 288 289 SCHED_ASSERT_LOCKED(); 290 291 if (p->p_slptime > 5 * loadfac) 292 p->p_estcpu = 0; 293 else { 294 p->p_slptime--; /* the first time was done in schedcpu */ 295 while (newcpu && --p->p_slptime) 296 newcpu = (int) decay_cpu(loadfac, newcpu); 297 p->p_estcpu = newcpu; 298 } 299 resetpriority(p); 300 } 301 302 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG) 303 void 304 sched_unlock_idle(void) 305 { 306 SIMPLE_UNLOCK(&sched_lock); 307 } 308 309 void 310 sched_lock_idle(void) 311 { 312 SIMPLE_LOCK(&sched_lock); 313 } 314 #endif /* MULTIPROCESSOR || LOCKDEBUG */ 315 316 /* 317 * General yield call. Puts the current process back on its run queue and 318 * performs a voluntary context switch. 319 */ 320 void 321 yield(void) 322 { 323 struct proc *p = curproc; 324 int s; 325 326 SCHED_LOCK(s); 327 p->p_priority = p->p_usrpri; 328 p->p_stat = SRUN; 329 setrunqueue(p); 330 p->p_stats->p_ru.ru_nvcsw++; 331 mi_switch(); 332 SCHED_UNLOCK(s); 333 } 334 335 /* 336 * General preemption call. Puts the current process back on its run queue 337 * and performs an involuntary context switch. If a process is supplied, 338 * we switch to that process. Otherwise, we use the normal process selection 339 * criteria. 340 */ 341 void 342 preempt(struct proc *newp) 343 { 344 struct proc *p = curproc; 345 int s; 346 347 /* 348 * XXX Switching to a specific process is not supported yet. 349 */ 350 if (newp != NULL) 351 panic("preempt: cpu_preempt not yet implemented"); 352 353 SCHED_LOCK(s); 354 p->p_priority = p->p_usrpri; 355 p->p_stat = SRUN; 356 setrunqueue(p); 357 p->p_stats->p_ru.ru_nivcsw++; 358 mi_switch(); 359 SCHED_UNLOCK(s); 360 } 361 362 363 /* 364 * Must be called at splstatclock() or higher. 365 */ 366 void 367 mi_switch(void) 368 { 369 struct proc *p = curproc; /* XXX */ 370 struct rlimit *rlim; 371 struct timeval tv; 372 #if defined(MULTIPROCESSOR) 373 int hold_count; 374 int sched_count; 375 #endif 376 struct schedstate_percpu *spc = &p->p_cpu->ci_schedstate; 377 378 SCHED_ASSERT_LOCKED(); 379 380 #if defined(MULTIPROCESSOR) 381 /* 382 * Release the kernel_lock, as we are about to yield the CPU. 383 * The scheduler lock is still held until cpu_switch() 384 * selects a new process and removes it from the run queue. 385 */ 386 sched_count = __mp_release_all_but_one(&sched_lock); 387 if (p->p_flag & P_BIGLOCK) 388 hold_count = __mp_release_all(&kernel_lock); 389 #endif 390 391 /* 392 * Compute the amount of time during which the current 393 * process was running, and add that to its total so far. 394 * XXX - use microuptime here to avoid strangeness. 395 */ 396 microuptime(&tv); 397 if (timercmp(&tv, &spc->spc_runtime, <)) { 398 #if 0 399 printf("uptime is not monotonic! " 400 "tv=%lu.%06lu, runtime=%lu.%06lu\n", 401 tv.tv_sec, tv.tv_usec, spc->spc_runtime.tv_sec, 402 spc->spc_runtime.tv_usec); 403 #endif 404 } else { 405 timersub(&tv, &spc->spc_runtime, &tv); 406 timeradd(&p->p_rtime, &tv, &p->p_rtime); 407 } 408 409 /* 410 * Check if the process exceeds its cpu resource allocation. 411 * If over max, kill it. 412 */ 413 rlim = &p->p_rlimit[RLIMIT_CPU]; 414 if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_cur) { 415 if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_max) { 416 psignal(p, SIGKILL); 417 } else { 418 psignal(p, SIGXCPU); 419 if (rlim->rlim_cur < rlim->rlim_max) 420 rlim->rlim_cur += 5; 421 } 422 } 423 424 /* 425 * Process is about to yield the CPU; clear the appropriate 426 * scheduling flags. 427 */ 428 spc->spc_schedflags &= ~SPCF_SWITCHCLEAR; 429 430 /* 431 * Pick a new current process and record its start time. 432 */ 433 uvmexp.swtch++; 434 cpu_switch(p); 435 436 /* 437 * Make sure that MD code released the scheduler lock before 438 * resuming us. 439 */ 440 SCHED_ASSERT_UNLOCKED(); 441 442 /* 443 * We're running again; record our new start time. We might 444 * be running on a new CPU now, so don't use the cache'd 445 * schedstate_percpu pointer. 446 */ 447 KDASSERT(p->p_cpu != NULL); 448 KDASSERT(p->p_cpu == curcpu()); 449 microuptime(&p->p_cpu->ci_schedstate.spc_runtime); 450 451 #if defined(MULTIPROCESSOR) 452 /* 453 * Reacquire the kernel_lock now. We do this after we've 454 * released the scheduler lock to avoid deadlock, and before 455 * we reacquire the interlock and the scheduler lock. 456 */ 457 if (p->p_flag & P_BIGLOCK) 458 __mp_acquire_count(&kernel_lock, hold_count); 459 __mp_acquire_count(&sched_lock, sched_count + 1); 460 #endif 461 } 462 463 /* 464 * Initialize the (doubly-linked) run queues 465 * to be empty. 466 */ 467 void 468 rqinit(void) 469 { 470 int i; 471 472 for (i = 0; i < NQS; i++) 473 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 474 SIMPLE_LOCK_INIT(&sched_lock); 475 } 476 477 static __inline void 478 resched_proc(struct proc *p, u_char pri) 479 { 480 struct cpu_info *ci; 481 482 /* 483 * XXXSMP 484 * Since p->p_cpu persists across a context switch, 485 * this gives us *very weak* processor affinity, in 486 * that we notify the CPU on which the process last 487 * ran that it should try to switch. 488 * 489 * This does not guarantee that the process will run on 490 * that processor next, because another processor might 491 * grab it the next time it performs a context switch. 492 * 493 * This also does not handle the case where its last 494 * CPU is running a higher-priority process, but every 495 * other CPU is running a lower-priority process. There 496 * are ways to handle this situation, but they're not 497 * currently very pretty, and we also need to weigh the 498 * cost of moving a process from one CPU to another. 499 * 500 * XXXSMP 501 * There is also the issue of locking the other CPU's 502 * sched state, which we currently do not do. 503 */ 504 ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu(); 505 if (pri < ci->ci_schedstate.spc_curpriority) 506 need_resched(ci); 507 } 508 509 /* 510 * Change process state to be runnable, 511 * placing it on the run queue if it is in memory, 512 * and awakening the swapper if it isn't in memory. 513 */ 514 void 515 setrunnable(struct proc *p) 516 { 517 SCHED_ASSERT_LOCKED(); 518 519 switch (p->p_stat) { 520 case 0: 521 case SRUN: 522 case SONPROC: 523 case SZOMB: 524 case SDEAD: 525 default: 526 panic("setrunnable"); 527 case SSTOP: 528 /* 529 * If we're being traced (possibly because someone attached us 530 * while we were stopped), check for a signal from the debugger. 531 */ 532 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) 533 atomic_setbits_int(&p->p_siglist, sigmask(p->p_xstat)); 534 case SSLEEP: 535 unsleep(p); /* e.g. when sending signals */ 536 break; 537 case SIDL: 538 break; 539 } 540 p->p_stat = SRUN; 541 setrunqueue(p); 542 if (p->p_slptime > 1) 543 updatepri(p); 544 p->p_slptime = 0; 545 resched_proc(p, p->p_priority); 546 } 547 548 /* 549 * Compute the priority of a process when running in user mode. 550 * Arrange to reschedule if the resulting priority is better 551 * than that of the current process. 552 */ 553 void 554 resetpriority(struct proc *p) 555 { 556 unsigned int newpriority; 557 558 SCHED_ASSERT_LOCKED(); 559 560 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO); 561 newpriority = min(newpriority, MAXPRI); 562 p->p_usrpri = newpriority; 563 resched_proc(p, p->p_usrpri); 564 } 565 566 /* 567 * We adjust the priority of the current process. The priority of a process 568 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu) 569 * is increased here. The formula for computing priorities (in kern_synch.c) 570 * will compute a different value each time p_estcpu increases. This can 571 * cause a switch, but unless the priority crosses a PPQ boundary the actual 572 * queue will not change. The cpu usage estimator ramps up quite quickly 573 * when the process is running (linearly), and decays away exponentially, at 574 * a rate which is proportionally slower when the system is busy. The basic 575 * principle is that the system will 90% forget that the process used a lot 576 * of CPU time in 5 * loadav seconds. This causes the system to favor 577 * processes which haven't run much recently, and to round-robin among other 578 * processes. 579 */ 580 581 void 582 schedclock(struct proc *p) 583 { 584 int s; 585 586 SCHED_LOCK(s); 587 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1); 588 resetpriority(p); 589 if (p->p_priority >= PUSER) 590 p->p_priority = p->p_usrpri; 591 SCHED_UNLOCK(s); 592 }