root/kern/kern_tc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dummy_get_timecount
  2. tc_delta
  3. binuptime
  4. nanouptime
  5. microuptime
  6. bintime
  7. nanotime
  8. microtime
  9. getnanouptime
  10. getmicrouptime
  11. getnanotime
  12. getmicrotime
  13. tc_init
  14. tc_getfrequency
  15. tc_setclock
  16. tc_windup
  17. sysctl_tc_hardware
  18. sysctl_tc_choice
  19. tc_ticktock
  20. inittimecounter
  21. sysctl_tc
  22. ntp_update_second
  23. tc_adjfreq

    1 /*-
    2  * ----------------------------------------------------------------------------
    3  * "THE BEER-WARE LICENSE" (Revision 42):
    4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
    5  * can do whatever you want with this stuff. If we meet some day, and you think
    6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
    7  * ----------------------------------------------------------------------------
    8  *
    9  * $OpenBSD: kern_tc.c,v 1.9 2007/05/09 17:42:19 deraadt Exp $
   10  * $FreeBSD: src/sys/kern/kern_tc.c,v 1.148 2003/03/18 08:45:23 phk Exp $
   11  */
   12 
   13 #include <sys/param.h>
   14 #include <sys/kernel.h>
   15 #include <sys/sysctl.h>
   16 #include <sys/syslog.h>
   17 #include <sys/systm.h>
   18 #include <sys/timetc.h>
   19 #include <sys/malloc.h>
   20 
   21 #ifdef __HAVE_TIMECOUNTER
   22 /*
   23  * A large step happens on boot.  This constant detects such steps.
   24  * It is relatively small so that ntp_update_second gets called enough
   25  * in the typical 'missed a couple of seconds' case, but doesn't loop
   26  * forever when the time step is large.
   27  */
   28 #define LARGE_STEP      200
   29 
   30 u_int dummy_get_timecount(struct timecounter *);
   31 
   32 void ntp_update_second(int64_t *, time_t *);
   33 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
   34 int sysctl_tc_choice(void *, size_t *, void *, size_t);
   35 
   36 /*
   37  * Implement a dummy timecounter which we can use until we get a real one
   38  * in the air.  This allows the console and other early stuff to use
   39  * time services.
   40  */
   41 
   42 u_int
   43 dummy_get_timecount(struct timecounter *tc)
   44 {
   45         static u_int now;
   46 
   47         return (++now);
   48 }
   49 
   50 static struct timecounter dummy_timecounter = {
   51         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
   52 };
   53 
   54 struct timehands {
   55         /* These fields must be initialized by the driver. */
   56         struct timecounter      *th_counter;
   57         int64_t                 th_adjustment;
   58         u_int64_t               th_scale;
   59         u_int                   th_offset_count;
   60         struct bintime          th_offset;
   61         struct timeval          th_microtime;
   62         struct timespec         th_nanotime;
   63         /* Fields not to be copied in tc_windup start with th_generation. */
   64         volatile u_int          th_generation;
   65         struct timehands        *th_next;
   66 };
   67 
   68 extern struct timehands th0;
   69 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
   70 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
   71 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
   72 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
   73 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
   74 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
   75 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
   76 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
   77 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
   78 static struct timehands th0 = {
   79         &dummy_timecounter,
   80         0,
   81         (uint64_t)-1 / 1000000,
   82         0,
   83         {1, 0},
   84         {0, 0},
   85         {0, 0},
   86         1,
   87         &th1
   88 };
   89 
   90 static struct timehands *volatile timehands = &th0;
   91 struct timecounter *timecounter = &dummy_timecounter;
   92 static struct timecounter *timecounters = &dummy_timecounter;
   93 
   94 volatile time_t time_second = 1;
   95 volatile time_t time_uptime = 0;
   96 
   97 extern struct timeval adjtimedelta;
   98 static struct bintime boottimebin;
   99 static int timestepwarnings;
  100 
  101 void tc_windup(void);
  102 
  103 /*
  104  * Return the difference between the timehands' counter value now and what
  105  * was when we copied it to the timehands' offset_count.
  106  */
  107 static __inline u_int
  108 tc_delta(struct timehands *th)
  109 {
  110         struct timecounter *tc;
  111 
  112         tc = th->th_counter;
  113         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
  114             tc->tc_counter_mask);
  115 }
  116 
  117 /*
  118  * Functions for reading the time.  We have to loop until we are sure that
  119  * the timehands that we operated on was not updated under our feet.  See
  120  * the comment in <sys/time.h> for a description of these 12 functions.
  121  */
  122 
  123 void
  124 binuptime(struct bintime *bt)
  125 {
  126         struct timehands *th;
  127         u_int gen;
  128 
  129         do {
  130                 th = timehands;
  131                 gen = th->th_generation;
  132                 *bt = th->th_offset;
  133                 bintime_addx(bt, th->th_scale * tc_delta(th));
  134         } while (gen == 0 || gen != th->th_generation);
  135 }
  136 
  137 void
  138 nanouptime(struct timespec *tsp)
  139 {
  140         struct bintime bt;
  141 
  142         binuptime(&bt);
  143         bintime2timespec(&bt, tsp);
  144 }
  145 
  146 void
  147 microuptime(struct timeval *tvp)
  148 {
  149         struct bintime bt;
  150 
  151         binuptime(&bt);
  152         bintime2timeval(&bt, tvp);
  153 }
  154 
  155 void
  156 bintime(struct bintime *bt)
  157 {
  158 
  159         binuptime(bt);
  160         bintime_add(bt, &boottimebin);
  161 }
  162 
  163 void
  164 nanotime(struct timespec *tsp)
  165 {
  166         struct bintime bt;
  167 
  168         bintime(&bt);
  169         bintime2timespec(&bt, tsp);
  170 }
  171 
  172 void
  173 microtime(struct timeval *tvp)
  174 {
  175         struct bintime bt;
  176 
  177         bintime(&bt);
  178         bintime2timeval(&bt, tvp);
  179 }
  180 
  181 void
  182 getnanouptime(struct timespec *tsp)
  183 {
  184         struct timehands *th;
  185         u_int gen;
  186 
  187         do {
  188                 th = timehands;
  189                 gen = th->th_generation;
  190                 bintime2timespec(&th->th_offset, tsp);
  191         } while (gen == 0 || gen != th->th_generation);
  192 }
  193 
  194 void
  195 getmicrouptime(struct timeval *tvp)
  196 {
  197         struct timehands *th;
  198         u_int gen;
  199 
  200         do {
  201                 th = timehands;
  202                 gen = th->th_generation;
  203                 bintime2timeval(&th->th_offset, tvp);
  204         } while (gen == 0 || gen != th->th_generation);
  205 }
  206 
  207 void
  208 getnanotime(struct timespec *tsp)
  209 {
  210         struct timehands *th;
  211         u_int gen;
  212 
  213         do {
  214                 th = timehands;
  215                 gen = th->th_generation;
  216                 *tsp = th->th_nanotime;
  217         } while (gen == 0 || gen != th->th_generation);
  218 }
  219 
  220 void
  221 getmicrotime(struct timeval *tvp)
  222 {
  223         struct timehands *th;
  224         u_int gen;
  225 
  226         do {
  227                 th = timehands;
  228                 gen = th->th_generation;
  229                 *tvp = th->th_microtime;
  230         } while (gen == 0 || gen != th->th_generation);
  231 }
  232 
  233 /*
  234  * Initialize a new timecounter and possibly use it.
  235  */
  236 void
  237 tc_init(struct timecounter *tc)
  238 {
  239         u_int u;
  240 
  241         u = tc->tc_frequency / tc->tc_counter_mask;
  242         /* XXX: We need some margin here, 10% is a guess */
  243         u *= 11;
  244         u /= 10;
  245         if (tc->tc_quality >= 0) {
  246                 if (u > hz) {
  247                         tc->tc_quality = -2000;
  248                         printf("Timecounter \"%s\" frequency %lu Hz",
  249                             tc->tc_name, (unsigned long)tc->tc_frequency);
  250                         printf(" -- Insufficient hz, needs at least %u\n", u);
  251                 }
  252         }
  253 
  254         tc->tc_next = timecounters;
  255         timecounters = tc;
  256         /*
  257          * Never automatically use a timecounter with negative quality.
  258          * Even though we run on the dummy counter, switching here may be
  259          * worse since this timecounter may not be monotonous.
  260          */
  261         if (tc->tc_quality < 0)
  262                 return;
  263         if (tc->tc_quality < timecounter->tc_quality)
  264                 return;
  265         if (tc->tc_quality == timecounter->tc_quality &&
  266             tc->tc_frequency < timecounter->tc_frequency)
  267                 return;
  268         (void)tc->tc_get_timecount(tc);
  269         (void)tc->tc_get_timecount(tc);
  270         timecounter = tc;
  271 }
  272 
  273 /* Report the frequency of the current timecounter. */
  274 u_int64_t
  275 tc_getfrequency(void)
  276 {
  277 
  278         return (timehands->th_counter->tc_frequency);
  279 }
  280 
  281 /*
  282  * Step our concept of UTC.  This is done by modifying our estimate of
  283  * when we booted.
  284  * XXX: not locked.
  285  */
  286 void
  287 tc_setclock(struct timespec *ts)
  288 {
  289         struct timespec ts2;
  290         struct bintime bt, bt2;
  291 
  292         binuptime(&bt2);
  293         timespec2bintime(ts, &bt);
  294         bintime_sub(&bt, &bt2);
  295         bintime_add(&bt2, &boottimebin);
  296         boottimebin = bt;
  297         bintime2timeval(&bt, &boottime);
  298 
  299         /* XXX fiddle all the little crinkly bits around the fiords... */
  300         tc_windup();
  301         if (timestepwarnings) {
  302                 bintime2timespec(&bt2, &ts2);
  303                 log(LOG_INFO, "Time stepped from %ld.%09ld to %ld.%09ld\n",
  304                     (long)ts2.tv_sec, ts2.tv_nsec,
  305                     (long)ts->tv_sec, ts->tv_nsec);
  306         }
  307 }
  308 
  309 /*
  310  * Initialize the next struct timehands in the ring and make
  311  * it the active timehands.  Along the way we might switch to a different
  312  * timecounter and/or do seconds processing in NTP.  Slightly magic.
  313  */
  314 void
  315 tc_windup(void)
  316 {
  317         struct bintime bt;
  318         struct timehands *th, *tho;
  319         u_int64_t scale;
  320         u_int delta, ncount, ogen;
  321         int i;
  322 #ifdef leapsecs
  323         time_t t;
  324 #endif
  325 
  326         /*
  327          * Make the next timehands a copy of the current one, but do not
  328          * overwrite the generation or next pointer.  While we update
  329          * the contents, the generation must be zero.
  330          */
  331         tho = timehands;
  332         th = tho->th_next;
  333         ogen = th->th_generation;
  334         th->th_generation = 0;
  335         bcopy(tho, th, offsetof(struct timehands, th_generation));
  336 
  337         /*
  338          * Capture a timecounter delta on the current timecounter and if
  339          * changing timecounters, a counter value from the new timecounter.
  340          * Update the offset fields accordingly.
  341          */
  342         delta = tc_delta(th);
  343         if (th->th_counter != timecounter)
  344                 ncount = timecounter->tc_get_timecount(timecounter);
  345         else
  346                 ncount = 0;
  347         th->th_offset_count += delta;
  348         th->th_offset_count &= th->th_counter->tc_counter_mask;
  349         bintime_addx(&th->th_offset, th->th_scale * delta);
  350 
  351 #ifdef notyet
  352         /*
  353          * Hardware latching timecounters may not generate interrupts on
  354          * PPS events, so instead we poll them.  There is a finite risk that
  355          * the hardware might capture a count which is later than the one we
  356          * got above, and therefore possibly in the next NTP second which might
  357          * have a different rate than the current NTP second.  It doesn't
  358          * matter in practice.
  359          */
  360         if (tho->th_counter->tc_poll_pps)
  361                 tho->th_counter->tc_poll_pps(tho->th_counter);
  362 #endif
  363 
  364         /*
  365          * Deal with NTP second processing.  The for loop normally
  366          * iterates at most once, but in extreme situations it might
  367          * keep NTP sane if timeouts are not run for several seconds.
  368          * At boot, the time step can be large when the TOD hardware
  369          * has been read, so on really large steps, we call
  370          * ntp_update_second only twice.  We need to call it twice in
  371          * case we missed a leap second.
  372          */
  373         bt = th->th_offset;
  374         bintime_add(&bt, &boottimebin);
  375         i = bt.sec - tho->th_microtime.tv_sec;
  376         if (i > LARGE_STEP)
  377                 i = 2;
  378         for (; i > 0; i--)
  379                 ntp_update_second(&th->th_adjustment, &bt.sec);
  380 
  381         /* Update the UTC timestamps used by the get*() functions. */
  382         /* XXX shouldn't do this here.  Should force non-`get' versions. */
  383         bintime2timeval(&bt, &th->th_microtime);
  384         bintime2timespec(&bt, &th->th_nanotime);
  385 
  386         /* Now is a good time to change timecounters. */
  387         if (th->th_counter != timecounter) {
  388                 th->th_counter = timecounter;
  389                 th->th_offset_count = ncount;
  390         }
  391 
  392         /*-
  393          * Recalculate the scaling factor.  We want the number of 1/2^64
  394          * fractions of a second per period of the hardware counter, taking
  395          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
  396          * processing provides us with.
  397          *
  398          * The th_adjustment is nanoseconds per second with 32 bit binary
  399          * fraction and we want 64 bit binary fraction of second:
  400          *
  401          *       x = a * 2^32 / 10^9 = a * 4.294967296
  402          *
  403          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
  404          * we can only multiply by about 850 without overflowing, but that
  405          * leaves suitably precise fractions for multiply before divide.
  406          *
  407          * Divide before multiply with a fraction of 2199/512 results in a
  408          * systematic undercompensation of 10PPM of th_adjustment.  On a
  409          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
  410          *
  411          * We happily sacrifice the lowest of the 64 bits of our result
  412          * to the goddess of code clarity.
  413          *
  414          */
  415         scale = (u_int64_t)1 << 63;
  416         scale += (th->th_adjustment / 1024) * 2199;
  417         scale /= th->th_counter->tc_frequency;
  418         th->th_scale = scale * 2;
  419 
  420         /*
  421          * Now that the struct timehands is again consistent, set the new
  422          * generation number, making sure to not make it zero.
  423          */
  424         if (++ogen == 0)
  425                 ogen = 1;
  426         th->th_generation = ogen;
  427 
  428         /* Go live with the new struct timehands. */
  429         time_second = th->th_microtime.tv_sec;
  430         time_uptime = th->th_offset.sec;
  431         timehands = th;
  432 }
  433 
  434 /* Report or change the active timecounter hardware. */
  435 int
  436 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
  437 {
  438         char newname[32];
  439         struct timecounter *newtc, *tc;
  440         int error;
  441 
  442         tc = timecounter;
  443         strlcpy(newname, tc->tc_name, sizeof(newname));
  444 
  445         error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
  446         if (error != 0 || strcmp(newname, tc->tc_name) == 0)
  447                 return (error);
  448         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
  449                 if (strcmp(newname, newtc->tc_name) != 0)
  450                         continue;
  451 
  452                 /* Warm up new timecounter. */
  453                 (void)newtc->tc_get_timecount(newtc);
  454                 (void)newtc->tc_get_timecount(newtc);
  455 
  456                 timecounter = newtc;
  457                 return (0);
  458         }
  459         return (EINVAL);
  460 }
  461 
  462 /* Report or change the active timecounter hardware. */
  463 int
  464 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
  465 {
  466         char buf[32], *spc, *choices;
  467         struct timecounter *tc;
  468         int error, maxlen;
  469 
  470         spc = "";
  471         error = 0;
  472         maxlen = 0;
  473         for (tc = timecounters; tc != NULL; tc = tc->tc_next)
  474                 maxlen += sizeof(buf);
  475         choices = malloc(maxlen, M_TEMP, M_WAITOK);
  476         *choices = '\0';
  477         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
  478                 snprintf(buf, sizeof(buf), "%s%s(%d)",
  479                     spc, tc->tc_name, tc->tc_quality);
  480                 spc = " ";
  481                 strlcat(choices, buf, maxlen);
  482         }
  483         error = sysctl_rdstring(oldp, oldlenp, newp, choices);
  484         free(choices, M_TEMP);
  485         return (error);
  486 }
  487 
  488 /*
  489  * Timecounters need to be updated every so often to prevent the hardware
  490  * counter from overflowing.  Updating also recalculates the cached values
  491  * used by the get*() family of functions, so their precision depends on
  492  * the update frequency.
  493  */
  494 static int tc_tick;
  495 
  496 void
  497 tc_ticktock(void)
  498 {
  499         static int count;
  500 
  501         if (++count < tc_tick)
  502                 return;
  503         count = 0;
  504         tc_windup();
  505 }
  506 
  507 void
  508 inittimecounter(void)
  509 {
  510         u_int p;
  511 
  512         /*
  513          * Set the initial timeout to
  514          * max(1, <approx. number of hardclock ticks in a millisecond>).
  515          * People should probably not use the sysctl to set the timeout
  516          * to smaller than its inital value, since that value is the
  517          * smallest reasonable one.  If they want better timestamps they
  518          * should use the non-"get"* functions.
  519          */
  520         if (hz > 1000)
  521                 tc_tick = (hz + 500) / 1000;
  522         else
  523                 tc_tick = 1;
  524         p = (tc_tick * 1000000) / hz;
  525 #ifdef DEBUG
  526         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
  527 #endif
  528 
  529         /* warm up new timecounter (again) and get rolling. */
  530         (void)timecounter->tc_get_timecount(timecounter);
  531         (void)timecounter->tc_get_timecount(timecounter);
  532 }
  533 
  534 /*
  535  * Return timecounter-related information.
  536  */
  537 int
  538 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
  539     void *newp, size_t newlen)
  540 {
  541         if (namelen != 1)
  542                 return (ENOTDIR);
  543 
  544         switch (name[0]) {
  545         case KERN_TIMECOUNTER_TICK:
  546                 return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
  547         case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
  548                 return (sysctl_int(oldp, oldlenp, newp, newlen,
  549                     &timestepwarnings));
  550         case KERN_TIMECOUNTER_HARDWARE:
  551                 return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
  552         case KERN_TIMECOUNTER_CHOICE:
  553                 return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
  554         default:
  555                 return (EOPNOTSUPP);
  556         }
  557         /* NOTREACHED */
  558 }
  559 
  560 void
  561 ntp_update_second(int64_t *adjust, time_t *sec)
  562 {
  563         struct timeval adj;
  564 
  565         /* Skew time according to any adjtime(2) adjustments. */
  566         timerclear(&adj);
  567         if (adjtimedelta.tv_sec > 0)
  568                 adj.tv_usec = 5000;
  569         else if (adjtimedelta.tv_sec == 0)
  570                 adj.tv_usec = MIN(500, adjtimedelta.tv_usec);
  571         else if (adjtimedelta.tv_sec < -1)
  572                 adj.tv_usec = -5000;
  573         else if (adjtimedelta.tv_sec == -1)
  574                 adj.tv_usec = MAX(-500, adjtimedelta.tv_usec - 1000000);
  575         timersub(&adjtimedelta, &adj, &adjtimedelta);
  576         *adjust = ((int64_t)adj.tv_usec * 1000) << 32;
  577         *adjust += timecounter->tc_freq_adj;
  578 }
  579 
  580 int
  581 tc_adjfreq(int64_t *old, int64_t *new)
  582 {
  583         if (old != NULL) {
  584                 *old = timecounter->tc_freq_adj;
  585         }
  586         if (new != NULL) {
  587                 timecounter->tc_freq_adj = *new;
  588         }
  589         return 0;
  590 }
  591 #endif /* __HAVE_TIMECOUNTER */

/* [<][>][^][v][top][bottom][index][help] */